Research Article
BibTex RIS Cite

Biomechanical Effect of Framework and Bruxism in All-on-4 Concept: A Finite Element Analysis

Year 2023, Volume: 14 Issue: 3, 300 - 314, 29.12.2023
https://doi.org/10.22312/sdusbed.1256240

Abstract

This study aimed to examine the stress distribution in maxillary all-on-4 concepts with different prosthetic frameworks under two different loading forces using finite element analysis. All-on-4 models were prepared with 4 different prosthetic framework materials as chromium-cobalt, polyetheretherketone, titanium, and zirconia (Model 1, model 2, model 3, and model 4 respectively). The stress on the bone tissue, implant elements, and prosthetic elements was evaluated under two distinct loading conditions representing the bite forces of healthy and bruxist individuals. The stress on the peri-implant bone, implant elements, and crowns were ranked as model 2 > model 3 > model 4 > model 1. Compressive stresses in the cortical bone exceeded the overload limit in all models under bruxist loading, and in model 2 under healthy loading. Tensile stress in the cortical bone and von Mises stress in the abutments exceeded the overload limit in model 3 under bruxist loading. Tensile stress in the cortical bone under both loading conditions and von Mises stress in implants, abutments, and crowns under bruxist loading exceeded the overload limits in model 2. Peak stresses in the frameworks were ranked as model 2 > model 1 > model 4 > model 3. The overloads in the cortical bone in this study should be considered when planning the all-on-4 concept in bruxist individuals. Nonpolymeric frameworks may be more suitable for the all-on-4 concept, as the PEEK framework produced greater stress on the bone tissue and surrounding structures than nonpolymeric frameworks.

References

  • Sadowsky SJ. 2019. Occlusal overload with dental implants: a review. International journal of implant dentistry, 5(1), 1-5.
  • Misch CE. 2002. The effect of bruxism on treatment planning for dental implants. Dentistry today, 21(9), 76-81.
  • Okeson, J. P. 2019. Management of temporomandibular disorders and occlusion-E-book. Elsevier Health Sciences, 130s.
  • Gibbs CH, Mahan PE, Mauderli A, Lundeen HC, Walsh EK. 1986. Limits of human bite strength. Journal of Prosthetic Dentistry, 56(2), 226-229.
  • Manfredini D, Poggio CE, Lobbezoo F. 2014. Is bruxism a risk factor for dental implants? A systematic review of the literature. Clinical implant dentistry and related research, 16(3), 460-469.
  • Lobbezoo F, Brouwers J, Cune M, Naeije M. 2006. Dental implants in patients with bruxing habits. Journal of oral rehabilitation, 33(2), 152-159.
  • Chrcanovic BR, Kisch J, Albrektsson T, Wennerberg A. 2016. Bruxism and dental implant failures: a multilevel mixed effects parametric survival analysis approach. Journal of oral rehabilitation, 43(11), 813-823.
  • de Araújo Nobre M, Moura Guedes C, Almeida R, Silva A. 2021. Poly‐ether‐ether‐ketone and implant dentistry: the future of mimicking natural dentition is now! Polymer International, 70(8), 999-1001.
  • Menini M, Conserva E, Tealdo T, Bevilacqua M, Pera F, Signori A, et al. 2013. Shock absorption capacity of restorative materials for dental implant prostheses: an in vitro study. International Journal of Prosthodontics, 26(6), 549-556
  • Pieri F, Aldini NN, Fini M, Corinaldesi G. 2009. Immediate occlusal loading of immediately placed implants supporting fixed restorations in completely edentulous arches: a 1‐year prospective pilot study. Journal of periodontology, 80(3), 411-421.
  • Sirandoni D, Leal E, Weber B, Noritomi PY, Fuentes R, Borie E. 2019. Effect of Different Framework Materials in Implant-Supported Fixed Mandibular Prostheses: A Finite Element Analysis. International Journal of Oral & Maxillofacial Implants, 34(6), 107-114.
  • Tribst JPM, de Morais DC, Alonso AA, Dal Piva AMdO, Borges ALS. 2017. Comparative three-dimensional finite element analysis of implant-supported fixed complete arch mandibular prostheses in two materials. The Journal of the Indian Prosthodontic Society, 17(3), 255.
  • Lee K-S, Shin S-W, Lee S-P, Kim J-E, Kim J-H, Lee J-Y, et al. 2017. Comparative Evaluation of a Four-Implant-Supported Polyetherketoneketone Framework Prosthesis: A Three-Dimensional Finite Element Analysis Based on Cone Beam Computed Tomography and Computer-Aided Design. International Journal of Prosthodontics, 30(6), 581-585.
  • Bhering CLB, Mesquita MF, Kemmoku DT, Noritomi PY, Consani RLX, Barão VAR. 2016. Comparison between all-on-four and all-on-six treatment concepts and framework material on stress distribution in atrophic maxilla: A prototyping guided 3D-FEA study. Materials Science and Engineering: C, 69, 715-725.
  • Favot L-M, Berry-Kromer V, Haboussi M, Thiebaud F, Zineb TB. 2014. Numerical study of the influence of material parameters on the mechanical behaviour of a rehabilitated edentulous mandible. Journal of dentistry, 42(3), 287-297.
  • Martin-Fernandez E, Gonzalez-Gonzalez I, deLlanos-Lanchares H, Mauvezin-Quevedo MA, Brizuela-Velasco A, Alvarez-Arenal A. 2018. Mandibular flexure and peri-implant bone stress distribution on an implant-supported fixed full-arch mandibular prosthesis: 3D finite element analysis. BioMed research international, 2018.
  • de Melo Jr EJM, Francischone CE. 2019. Three-dimensional finite element analysis of two angled narrow-diameter implant designs for an all-on-4 prosthesis. The Journal of Prosthetic Dentistry, 124(4), 477-484.
  • Geng J-P, Tan KB, Liu G-R. 2001. Application of finite element analysis in implant dentistry: a review of the literature. The Journal of prosthetic dentistry, 85(6), 585-598.
  • Holmgren EP, Seckinger RJ, Kilgren LM, Mante F. 1998. Evaluating Parameters of osseointegrated dental implants using finite element analysis a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. Journal of Oral Implantology, 24(2), 80-88.
  • De Rossi M, Santos CM, Migliorança R, Regalo SCH. 2014. All on F our® Fixed Implant Support Rehabilitation: A Masticatory Function Study. Clinical implant dentistry and related research, 16(4), 594-600.
  • Mericske-Stern R, Assal P, Mericske E, Bürgin W. 1995. Occlusal force and oral tactile sensibility measured in partially edentulous patients with ITI implants. International Journal of Oral & Maxillofacial Implants, 10(3), 345-354.
  • Richter E-J. 1995. In vivo vertical forces on implants. International Journal of Oral & Maxillofacial Implants, 10(1), 99-107.
  • Sezer T, Kilic K, Esim E. 2022. Effect of anterior implant position on biomechanical performance in the maxillary all-on-four treatment: a 3-D finite element analysis. Journal of Oral Implantology, 48(3), 177-186.
  • Sezer, T., Kilic, K., & Esim, E. 2022. Effect of Implant Diameter and Bruxism on Biomechanical Performance in Maxillary All-on-4 Treatment: A 3D Finite Element Analysis. International Journal of Oral & Maxillofacial Implants, 37(4), 709-721.
  • Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G. 2008. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. The Journal of prosthetic dentistry, 100(6), 422-431.
  • Valera-Jiménez J, Burgueño-Barris G, Gómez-González S, López-López J, Valmaseda-Castellón E, Fernández-Aguado E. 2020. Finite element analysis of narrow dental implants. Dental Materials, 36(7), 927-935.
  • Martin RB, Burr DB, Sharkey NA, Fyhrie DP. 1998. Skeletal tissue mechanics: Springer, 127-181.
  • Kilic E, Doganay O. 2020. Evaluation of stress in tilted implant concept with variable diameters in the atrophic mandible: three-dimensional finite element analysis. Journal of Oral Implantology, 46(1), 19-26.
  • Bertl K, Isidor F, von Steyern PV, Stavropoulos A. 2020. Does implantoplasty affect the failure strength of narrow and regular diameter implants? A laboratory study. Clinical Oral Investigations, 1-9.
  • Coray R, Zeltner M, Özcan M. 2016. Fracture strength of implant abutments after fatigue testing: A systematic review and a meta-analysis. journal of the mechanical behavior of biomedical materials, 62, 333-346.
  • Tartuk BK, Ayna E, Başaran EG. 2019. Comparison of the Load-bearing Capacities of Monolithic PEEK, Zirconia and Hybrid Ceramic Molar Crowns. Meandros Medical and Dental Journal, 20(1), 45.
  • Frost HM. 1987. Bone “mass” and the “mechanostat”: a proposal. The anatomical record, 219(1), 1-9.
  • Maló P, de Araujo Nobre M, Petersson U, Wigren S. 2006. A pilot study of complete edentulous rehabilitation with immediate function using a new implant design: case series. Clinical implant dentistry and related research, 8(4), 223-232.
  • Maló P, Rangert B, Nobre M. 2005. All‐on‐4 immediate‐function concept with Brånemark System® implants for completely edentulous maxillae: a 1‐year retrospective clinical study. Clinical implant dentistry and related research, 7, 88-94.
  • Kim, W. D., Jacobson, Z., & Nathanson, D. 1999. In vitro stress analyses of dental implants supporting screw-retained and cement-retained prostheses. Implant dentistry, 8(2), 141-151.

All-on-4 Konseptinde Altyapı ve Bruksizmin Biyomekanik Etkisi: Sonlu Elemanlar Analizi

Year 2023, Volume: 14 Issue: 3, 300 - 314, 29.12.2023
https://doi.org/10.22312/sdusbed.1256240

Abstract

Bu çalışma, iki farklı yükleme kuvveti altında farklı protetik altyapılara sahip maksiller all-on-4 konseptlerindeki stres dağılımını sonlu elemanlar analizi kullanarak incelemeyi amaçlamıştır. Krom-kobalt, polietereterketon, titanyum ve zirkonya olmak üzere 4 farklı protetik altyapı materyali ile all-on-4 modeller tasarlandı (Sırasıyla model 1, model 2, model 3, model 4). Sağlıklı ve bruksist bireylerin ısırma kuvvetlerini temsil eden iki farklı yükleme koşulu altında kemik doku, implant elemanları ve protetik elemanlar üzerindeki stresler değerlendirildi. Peri-implant kemik, implant elemanları ve kronlar üzerindeki stresler model 2>model 3>model4>model 1 olarak sıralandı. Bruksist yükleme altında tüm modellerdeki ve sağlıklı yükleme altında model 2' deki kortikal kemikte oluşan baskı stresleri aşırı yükleme sınırını aştı. Kortikal kemikte oluşan gerilme stresi ve dayanaklardaki von Mises stres bruksist yükleme altındaki model 3’ te aşırı yükleme sınırını aştı. Model 2’ de, her iki yükleme koşulunda kortikal kemikte oluşan gerilme stresi ve bruksist yükleme altında implantlar, dayanaklar ve kronlardaki von Mises stresler aşırı yükleme sınırını aştı. Altyapılardaki stresler model 2>model 1>model 4>model 3 olarak sıralandı. Bruksist bireylerde all-on-4 konsepti planlanırken bu çalışmadaki kortikal kemikte oluşan aşırı yüklemeler göz önünde bulundurulmalıdır. PEEK altyapı kemik doku ve çevreleyen yapılar üzerinde polimerik olmayan altyapılara göre daha fazla stres oluşturduğundan polimerik olmayan altyapılar all-on-4 konsepti için daha uygun olabilir

References

  • Sadowsky SJ. 2019. Occlusal overload with dental implants: a review. International journal of implant dentistry, 5(1), 1-5.
  • Misch CE. 2002. The effect of bruxism on treatment planning for dental implants. Dentistry today, 21(9), 76-81.
  • Okeson, J. P. 2019. Management of temporomandibular disorders and occlusion-E-book. Elsevier Health Sciences, 130s.
  • Gibbs CH, Mahan PE, Mauderli A, Lundeen HC, Walsh EK. 1986. Limits of human bite strength. Journal of Prosthetic Dentistry, 56(2), 226-229.
  • Manfredini D, Poggio CE, Lobbezoo F. 2014. Is bruxism a risk factor for dental implants? A systematic review of the literature. Clinical implant dentistry and related research, 16(3), 460-469.
  • Lobbezoo F, Brouwers J, Cune M, Naeije M. 2006. Dental implants in patients with bruxing habits. Journal of oral rehabilitation, 33(2), 152-159.
  • Chrcanovic BR, Kisch J, Albrektsson T, Wennerberg A. 2016. Bruxism and dental implant failures: a multilevel mixed effects parametric survival analysis approach. Journal of oral rehabilitation, 43(11), 813-823.
  • de Araújo Nobre M, Moura Guedes C, Almeida R, Silva A. 2021. Poly‐ether‐ether‐ketone and implant dentistry: the future of mimicking natural dentition is now! Polymer International, 70(8), 999-1001.
  • Menini M, Conserva E, Tealdo T, Bevilacqua M, Pera F, Signori A, et al. 2013. Shock absorption capacity of restorative materials for dental implant prostheses: an in vitro study. International Journal of Prosthodontics, 26(6), 549-556
  • Pieri F, Aldini NN, Fini M, Corinaldesi G. 2009. Immediate occlusal loading of immediately placed implants supporting fixed restorations in completely edentulous arches: a 1‐year prospective pilot study. Journal of periodontology, 80(3), 411-421.
  • Sirandoni D, Leal E, Weber B, Noritomi PY, Fuentes R, Borie E. 2019. Effect of Different Framework Materials in Implant-Supported Fixed Mandibular Prostheses: A Finite Element Analysis. International Journal of Oral & Maxillofacial Implants, 34(6), 107-114.
  • Tribst JPM, de Morais DC, Alonso AA, Dal Piva AMdO, Borges ALS. 2017. Comparative three-dimensional finite element analysis of implant-supported fixed complete arch mandibular prostheses in two materials. The Journal of the Indian Prosthodontic Society, 17(3), 255.
  • Lee K-S, Shin S-W, Lee S-P, Kim J-E, Kim J-H, Lee J-Y, et al. 2017. Comparative Evaluation of a Four-Implant-Supported Polyetherketoneketone Framework Prosthesis: A Three-Dimensional Finite Element Analysis Based on Cone Beam Computed Tomography and Computer-Aided Design. International Journal of Prosthodontics, 30(6), 581-585.
  • Bhering CLB, Mesquita MF, Kemmoku DT, Noritomi PY, Consani RLX, Barão VAR. 2016. Comparison between all-on-four and all-on-six treatment concepts and framework material on stress distribution in atrophic maxilla: A prototyping guided 3D-FEA study. Materials Science and Engineering: C, 69, 715-725.
  • Favot L-M, Berry-Kromer V, Haboussi M, Thiebaud F, Zineb TB. 2014. Numerical study of the influence of material parameters on the mechanical behaviour of a rehabilitated edentulous mandible. Journal of dentistry, 42(3), 287-297.
  • Martin-Fernandez E, Gonzalez-Gonzalez I, deLlanos-Lanchares H, Mauvezin-Quevedo MA, Brizuela-Velasco A, Alvarez-Arenal A. 2018. Mandibular flexure and peri-implant bone stress distribution on an implant-supported fixed full-arch mandibular prosthesis: 3D finite element analysis. BioMed research international, 2018.
  • de Melo Jr EJM, Francischone CE. 2019. Three-dimensional finite element analysis of two angled narrow-diameter implant designs for an all-on-4 prosthesis. The Journal of Prosthetic Dentistry, 124(4), 477-484.
  • Geng J-P, Tan KB, Liu G-R. 2001. Application of finite element analysis in implant dentistry: a review of the literature. The Journal of prosthetic dentistry, 85(6), 585-598.
  • Holmgren EP, Seckinger RJ, Kilgren LM, Mante F. 1998. Evaluating Parameters of osseointegrated dental implants using finite element analysis a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. Journal of Oral Implantology, 24(2), 80-88.
  • De Rossi M, Santos CM, Migliorança R, Regalo SCH. 2014. All on F our® Fixed Implant Support Rehabilitation: A Masticatory Function Study. Clinical implant dentistry and related research, 16(4), 594-600.
  • Mericske-Stern R, Assal P, Mericske E, Bürgin W. 1995. Occlusal force and oral tactile sensibility measured in partially edentulous patients with ITI implants. International Journal of Oral & Maxillofacial Implants, 10(3), 345-354.
  • Richter E-J. 1995. In vivo vertical forces on implants. International Journal of Oral & Maxillofacial Implants, 10(1), 99-107.
  • Sezer T, Kilic K, Esim E. 2022. Effect of anterior implant position on biomechanical performance in the maxillary all-on-four treatment: a 3-D finite element analysis. Journal of Oral Implantology, 48(3), 177-186.
  • Sezer, T., Kilic, K., & Esim, E. 2022. Effect of Implant Diameter and Bruxism on Biomechanical Performance in Maxillary All-on-4 Treatment: A 3D Finite Element Analysis. International Journal of Oral & Maxillofacial Implants, 37(4), 709-721.
  • Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo G. 2008. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. The Journal of prosthetic dentistry, 100(6), 422-431.
  • Valera-Jiménez J, Burgueño-Barris G, Gómez-González S, López-López J, Valmaseda-Castellón E, Fernández-Aguado E. 2020. Finite element analysis of narrow dental implants. Dental Materials, 36(7), 927-935.
  • Martin RB, Burr DB, Sharkey NA, Fyhrie DP. 1998. Skeletal tissue mechanics: Springer, 127-181.
  • Kilic E, Doganay O. 2020. Evaluation of stress in tilted implant concept with variable diameters in the atrophic mandible: three-dimensional finite element analysis. Journal of Oral Implantology, 46(1), 19-26.
  • Bertl K, Isidor F, von Steyern PV, Stavropoulos A. 2020. Does implantoplasty affect the failure strength of narrow and regular diameter implants? A laboratory study. Clinical Oral Investigations, 1-9.
  • Coray R, Zeltner M, Özcan M. 2016. Fracture strength of implant abutments after fatigue testing: A systematic review and a meta-analysis. journal of the mechanical behavior of biomedical materials, 62, 333-346.
  • Tartuk BK, Ayna E, Başaran EG. 2019. Comparison of the Load-bearing Capacities of Monolithic PEEK, Zirconia and Hybrid Ceramic Molar Crowns. Meandros Medical and Dental Journal, 20(1), 45.
  • Frost HM. 1987. Bone “mass” and the “mechanostat”: a proposal. The anatomical record, 219(1), 1-9.
  • Maló P, de Araujo Nobre M, Petersson U, Wigren S. 2006. A pilot study of complete edentulous rehabilitation with immediate function using a new implant design: case series. Clinical implant dentistry and related research, 8(4), 223-232.
  • Maló P, Rangert B, Nobre M. 2005. All‐on‐4 immediate‐function concept with Brånemark System® implants for completely edentulous maxillae: a 1‐year retrospective clinical study. Clinical implant dentistry and related research, 7, 88-94.
  • Kim, W. D., Jacobson, Z., & Nathanson, D. 1999. In vitro stress analyses of dental implants supporting screw-retained and cement-retained prostheses. Implant dentistry, 8(2), 141-151.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Araştırma Articlesi
Authors

Taygun Sezer 0000-0002-4169-4788

Kerem Kılıç 0000-0003-2474-7865

Emir Esim 0000-0003-0801-9155

Publication Date December 29, 2023
Submission Date February 27, 2023
Published in Issue Year 2023 Volume: 14 Issue: 3

Cite

Vancouver Sezer T, Kılıç K, Esim E. All-on-4 Konseptinde Altyapı ve Bruksizmin Biyomekanik Etkisi: Sonlu Elemanlar Analizi. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2023;14(3):300-14.

SDÜ Sağlık Bilimleri Dergisi, makalenin gönderilmesi ve yayınlanması dahil olmak üzere hiçbir aşamada herhangi bir ücret talep etmemektedir. Dergimiz, bilimsel araştırmaları okuyucuya ücretsiz sunmanın bilginin küresel paylaşımını artıracağı ilkesini benimseyerek, içeriğine anında açık erişim sağlamaktadır.