Research Article
BibTex RIS Cite

INVESTIGATION OF URSODEOXYCHOLIC ACID EFFECTS ON SIROLIMUS TREATED ADIPOSE TISSUE-DERIVED MESENCHYMAL STEM CELLS

Year 2022, Volume: 29 Issue: 3, 324 - 334, 30.09.2022
https://doi.org/10.17343/sdutfd.1077520

Abstract

Objective
The usage of mesenchymal stem cells (MSC) with
immunosuppressive drugs after organ transplantation
is becoming remarkable in clinical applications.
However, the drugs negatively affect MSCs.
Ursodeoxycholic acid (UDCA), which is an antioxidant
molecule, may reverse these effects. The study aims
that to determine the effects of sirolimus and UDCA
on human adipose tissue-derived MSCs (ADMSCs)
individually and in combination.
Material and Method
The cytotoxicity of the agents was evaluated by
WST-1 test in time and dose-dependent manner.
The combinational effects were determined using
isobologram analysis. Muse cell analyzer was used for
the evaluation of apoptosis and cell cycle. Oxidative
stress markers were measured by biochemical methods.
Results
IC50 dose of sirolimus was determined as 18.58μM
in the 48th hour. Because no cytotoxic effect was
observed at the studied doses of UDCA, the apoptosis,
cell cycle, and oxidative stress indicator analyses
were continued with a safe dose of 100 μM. Sirolimus
promoted apoptosis and inhibited cell proliferation.
It was determined that UDCA reduced the apoptotic
and anti-proliferative effects of sirolimus on ADMSCs
with its anti-oxidant property.
Conclusion
The UDCA treatment in combination with
immunosuppressive therapy after organ and tissue
transplantation may have positive effects on ADMSCs.

Supporting Institution

Ege University Research Foundation

Project Number

2015/TIP/010

References

  • 1. Wong CJ, Pagalilauan G. Primary Care of the Solid Organ Transplant Recipient. Med Clin North Am. 2015;99(5):1075- 1103. doi:10.1016/j.mcna.2015.05.002
  • 2. Watson CJE, Dark JH. Organ transplantation: historical perspective and current practice. Br J Anaesth. 2012;108(suppl 1):i29-i42. doi:10.1093/bja/aer384
  • 3. Halloran PF. Immunosuppressive drugs for kidney transplantation. N Engl J Med. 2004;351(26):2715-2729. doi:10.1056/ NEJMra033540
  • 4. Tsang CK, Qi H, Liu LF, Zheng XFS. Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov Today. 2007;12(3-4):112-124. doi:10.1016/j.drudis.2006.12.008
  • 5. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. Published online 2013. doi:10.1038/ emm.2013.94
  • 6. Frenette PS, Pinho S, Lucas D, Scheiermann C. Mesenchymal Stem Cell: Keystone of the Hematopoietic Stem Cell Niche and a Stepping-Stone for Regenerative Medicine. Annu Rev Immunol. Published online 2013. doi:10.1146/annurev-immunol- 032712-095919
  • 7. Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ. Published online 2014. doi:10.1038/cdd.2013.158
  • 8. Roma MG, Toledo FD, Boaglio AC, Basiglio CL, Crocenzi FA, Sánchez Pozzi EJ. Ursodeoxycholic acid in cholestasis: linking action mechanisms to therapeutic applications. Clin Sci. 2011;121(12):523-544. doi:10.1042/CS20110184
  • 9. Lapenna D, Ciofani G, Festi D, et al. Antioxidant properties of ursodeoxycholic acid. Biochem Pharmacol. 2002;64(11):1661- 1667. doi:10.1016/S0006-2952(02)01391-6
  • 10. Taylor AL, Watson CJE, Bradley JA. Immunosuppressive agents in solid organ transplantation: Mechanisms of action and therapeutic efficacy. Crit Rev Oncol Hematol. 2005;56(1 SPEC. ISS.):23-46. doi:10.1016/j.critrevonc.2005.03.012
  • 11. Hung CM, Garcia-Haro L, Sparks CA, Guertin DA. mTOR-dependent cell survival mechanisms. Cold Spring Harb Perspect Biol. Published online 2012. doi:10.1101/cshperspect.a008771
  • 12. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. Published online 2004. doi:10.1101/gad.1212704
  • 13. Sir G, Goker Bagca B, Yigitturk G, et al. Antagonistic Effect of Oxytocin and Tacrolimus Combination on Adipose Tissue - Derived Mesenchymal Stem Cells: Antagonistic effect of oxytocin and tacrolimus. Biomed Pharmacother. 2018;97:1173-1181. doi:10.1016/j.biopha.2017.10.076
  • 14. Gonwa TA, Hricik DE, Brinker K, Grinyo JM, Schena FP. Improved renal function in sirolimus-treated renal transplant patients after early cyclosporine elimination. Transplantation. Published online 2002. doi:10.1097/00007890-200212150-00013
  • 15. Horoz M. Calcineurin and mTOR Inhibitor Nephrotoxicity. Turkiye Klin Nephrol. 2016;9(2):44-52.
  • 16. Hoogduijn MJ, Crop MJ, Korevaar SS, et al. Susceptibility of Human Mesenchymal Stem Cells to Tacrolimus, Mycophenolic Acid, and Rapamycin. Transplantation. 2008;86(9):1283-1291. doi:10.1097/TP.0b013e31818aa536
  • 17. Buron F, Perrin H, Malcus C, et al. Human Mesenchymal Stem Cells and Immunosuppressive Drug Interactions in Allogeneic Responses: An In Vitro Study Using Human Cells. Transplant Proc. 2009;41(8):3347-3352. doi:10.1016/j.transproceed. 2009.08.030
  • 18. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36(4):568-584. doi:10.1016/j.biocel.2003.11.001
  • 19. Peng Y, Ke M, Xu L, et al. Donor-derived mesenchymal stem cells combined with low-dose tacrolimus prevent acute rejection after renal transplantation: A clinical pilot study. Transplantation. Published online 2013. doi:10.1097/TP.0b013e3182754c53
  • 20. Cutler C, Antin JH. Sirolimus for GVHD prophylaxis in allogeneic stem cell transplantation. Bone Marrow Transplant. Published online 2004. doi:10.1038/sj.bmt.1704604
  • 21. Perruccio K, Mastrodicasa E, Arcioni F, et al. Sirolimus-Based Immunosuppression as GvHD Prophylaxis after Bone Marrow Transplantation for Severe Aplastic Anaemia: A Case Report and Review of the Literature. Case Rep Hematol. Published online 2015. doi:10.1155/2015/321602
  • 22. Biray Avci, C, Yilmaz Susluer, S, Sigva Dogan, ZO, Sogutlu, F, Dundar, M, Gunduz C. The effect of rapamycin in prostate cancer cell lines. Ege J Med. 2013;52(1):7-14.
  • 23. Ikegami T, Matsuzaki Y. Ursodeoxycholic acid: Mechanism of action and novel clinical applications. Hepatol Res. Published online 2008. doi:10.1111/j.1872-034X.2007.00297.x
  • 24. Ruutu T, Eriksson B, Remes K, et al. Ursodeoxycholic acid for the prevention of hepatic complications in allogeneic stem cell transplantation. Blood. Published online 2002. doi:10.1182/blood- 2001-12-0159
  • 25. Ruutu T, Juvonen E, Remberger M, et al. Improved Survival with Ursodeoxycholic Acid Prophylaxis in Allogeneic Stem Cell Transplantation: Long-Term Follow-Up of a Randomized Study. Biol Blood Marrow Transplant. 2014;20(1):135-138. doi: 10.1016/j.bbmt.2013.10.014
  • 26. Wang L, Han Q, Chen H, et al. Allogeneic bone marrow mesenchymal stem cell transplantation in patients with UDCA-resis- tant primary biliary cirrhosis. Stem Cells Dev. Published online 2014. doi:10.1089/scd.2013.0500
  • 27. Lazaridis KN, Gores GJ, Lindor KD. Ursodeoxycholic acid “mechanisms of action and clinical use in hepatobiliary disorders.” J Hepatol. Published online 2001. doi:10.1016/S0168- 8278(01)00092-7
  • 28. Poupon R, Poupon RE. Ursodeoxycholic acid therapy of chronic cholestatic conditions in adults and children. Pharmacol Ther. 1995;66(1):1-15.
  • 29. Qi H-P, Wei S-Q, Gao X-C, et al. Ursodeoxycholic acid prevents selenite-induced oxidative stress and alleviates cataract formation: In vitro and in vivo studies. Mol Vis. 2012;18(January): 151-160.
  • 30. M K. mTOR signaling pathway and mTOR inhibitors in the treatment of cancer. Dicle Med J. 2013;40(1):156-160.
  • 31. Rodrigues CMP, Fan G, Ma X, Kren BT, Steer CJ. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Invest. 1998;101(12):2790-2799. doi:10.1172/JCI1325
  • 32. Ji WJ, Qu Q, Jin Y, Zhao L, He XD. Ursodeoxycholic acid inhibits hepatocyte-like cell apoptosis by down-regulating the expressions of Bax and Caspase-3. Natl Med J China. Published online 2009. doi:10.3760/cma.j.issn.0376-2491.2009.42.014
  • 33. Amaral JD, Castro RE, Solá S, Steer CJ, Rodrigues CMP. p53 is a key molecular target of ursodeoxycholic acid in regulating apoptosis. J Biol Chem. Published online 2007. doi:10.1074/ jbc.M704075200
  • 34. Koga H, Sakisaka S, Ohishi M, Sata M, Tanikawa K. Nuclear DNA fragmentation and expression of Bcl-2 in primary biliary cirrhosis. Hepatology. 1997;25(5):1077-1084. doi:10.1002/ hep.510250505
  • 35. Perez MJ, Britz O. Bile-acid-induced cell injury and protection. World J Gastroenterol. 2009;15(14):1677-1689. doi:10.3748/ wjg.15.1677
  • 36. Qiao L, Yacoub A, Studer E, et al. Inhibition of the MAPK and PI3K pathways enhances UDCA-induced apoptosis in primary rodent hepatocytes. Hepatology. 2002;35(4):779-789. doi:10.1053/jhep.2002.32533
  • 37. Rodrigues CMP, Fan G, Wong PY, Kren BT, Steer CJ. Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. Mol Med. Published online 1998. doi:10.1007/bf03401914
  • 38. Hempfling W, Dilger K, Beuers U. Systematic review: Ursodeoxycholic acid - Adverse effects and drug interactions. Aliment Pharmacol Ther. Published online 2003. doi:10.1046/j.1365- 2036.2003.01792.x
  • 39. Kowdley K V. Ursodeoxycholic acid therapy in hepatobiliary disease. Am J Med. Published online 2000. doi:10.1016/S0002- 9343(00)00318-1
  • 40. Kotb MA. Molecular mechanisms of ursodeoxycholic acid toxicity & side effects: Ursodeoxycholic acid freezes regeneration & induces hibernation mode. Int J Mol Sci. 2012;13(7):8882- 8914. doi:10.3390/ijms13078882
  • 41. Serviddio G, Pereda J, Pallardó F V., et al. Ursodeoxycholic Acid Protects against Secondary Biliary Cirrhosis in Rats by Preventing Mitochondrial Oxidative Stress. Hepatology. Published online 2004. doi:10.1002/hep.20101
  • 42. Tsagarakis NJ, Drygiannakis I, Batistakis AG, Kolios G, Kouroumalis EA. A concentration-dependent effect of ursodeoxycholate on apoptosis and caspases activities of HepG2 hepatocellular carcinoma cells. Eur J Pharmacol. 2010;640(1-3):1-7. doi:10.1016/j.ejphar.2010.04.023
  • 43. Akdemir A, Sahin C, Erbas O, Yeniel AO, Sendag F. Is ursodeoxycholic acid crucial for ischemia/reperfusion-induced ovarian injury in rat ovary? Arch Gynecol Obstet. 2015;292(2):445-450. doi:10.1007/s00404-015-3646-9

URSODEOKSİKOLİK ASİTİN SİROLİMUS UYGULANAN YAĞ DOKUSU KÖKENLİ MEZENKİMAL KÖK HÜCRELER ÜZERİNE ETKİLERİNİN İNCELENMESİ

Year 2022, Volume: 29 Issue: 3, 324 - 334, 30.09.2022
https://doi.org/10.17343/sdutfd.1077520

Abstract

Amaç
Organ nakli sonrası mezenkimal kök hücrelerin (MKH)
immünosupresif ilaçlarla birlikte kullanımı klinik uygulamalarda
dikkat çekici hale gelmektedir. Bununla
birlikte, ilaçlar MKH'leri olumsuz yönde etkilemektedir.
Antioksidan bir molekül olan ursodeoksikolik asit
(UDKA) bu etkileri tersine çevirebilecektir. Bu çalışmanın
amacı, sirolimus ve UDKA'nın bireysel ve kombinasyon
olarak uygulanmasının insan yağ dokusu
kaynaklı MKH'ler (YDKMKH) üzerindeki etkilerinin
incelenmesidir.
Gereç ve Yöntem
Etken maddelerin sitotoksik etkileri zamana ve doza
bağlı WST-1 testi ile değerlendirildi. Kombinasyon
etkileri, izobologram analizi kullanılarak belirlendi.
Apoptoz ve hücre döngüsünün değerlendirilmesi için
Muse hücre analizörü kullanıldı. Oksidatif stress belirteçlerinin
değişimi biyokimyasal yöntemle ölçüldü.
Bulgular
Sirolimusun IC50 dozu 48. saatte 18.58μM olarak
belirlendi. UDKA uygulanan doz aralığında sitotoksik
etki belirlenmediği için apoptoz, hücre döngüsü ve
oksidatif stres indikatör analizlerine 100 μM güvenli
doz ile devam edildi. Sirolimusun, apoptozu teşvik ettiği
ve hücre proliferasyonunu inhibe ettiği belirlendi.
UDKA'nın antioksidan özelliği ile sirolimusun YDKMKH'ler
üzerindeki apoptotik ve antiproliferatif etkilerini
azalttığı belirlendi.
Sonuç
Organ ve doku transplantasyonu sonrası immünosupresif
tedavi ile kombinasyon halinde UDKA tedavisinin
YDKMKH'ler üzerinde olumlu etkileri olabilecektir.

Project Number

2015/TIP/010

References

  • 1. Wong CJ, Pagalilauan G. Primary Care of the Solid Organ Transplant Recipient. Med Clin North Am. 2015;99(5):1075- 1103. doi:10.1016/j.mcna.2015.05.002
  • 2. Watson CJE, Dark JH. Organ transplantation: historical perspective and current practice. Br J Anaesth. 2012;108(suppl 1):i29-i42. doi:10.1093/bja/aer384
  • 3. Halloran PF. Immunosuppressive drugs for kidney transplantation. N Engl J Med. 2004;351(26):2715-2729. doi:10.1056/ NEJMra033540
  • 4. Tsang CK, Qi H, Liu LF, Zheng XFS. Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov Today. 2007;12(3-4):112-124. doi:10.1016/j.drudis.2006.12.008
  • 5. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. Published online 2013. doi:10.1038/ emm.2013.94
  • 6. Frenette PS, Pinho S, Lucas D, Scheiermann C. Mesenchymal Stem Cell: Keystone of the Hematopoietic Stem Cell Niche and a Stepping-Stone for Regenerative Medicine. Annu Rev Immunol. Published online 2013. doi:10.1146/annurev-immunol- 032712-095919
  • 7. Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ. Published online 2014. doi:10.1038/cdd.2013.158
  • 8. Roma MG, Toledo FD, Boaglio AC, Basiglio CL, Crocenzi FA, Sánchez Pozzi EJ. Ursodeoxycholic acid in cholestasis: linking action mechanisms to therapeutic applications. Clin Sci. 2011;121(12):523-544. doi:10.1042/CS20110184
  • 9. Lapenna D, Ciofani G, Festi D, et al. Antioxidant properties of ursodeoxycholic acid. Biochem Pharmacol. 2002;64(11):1661- 1667. doi:10.1016/S0006-2952(02)01391-6
  • 10. Taylor AL, Watson CJE, Bradley JA. Immunosuppressive agents in solid organ transplantation: Mechanisms of action and therapeutic efficacy. Crit Rev Oncol Hematol. 2005;56(1 SPEC. ISS.):23-46. doi:10.1016/j.critrevonc.2005.03.012
  • 11. Hung CM, Garcia-Haro L, Sparks CA, Guertin DA. mTOR-dependent cell survival mechanisms. Cold Spring Harb Perspect Biol. Published online 2012. doi:10.1101/cshperspect.a008771
  • 12. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. Published online 2004. doi:10.1101/gad.1212704
  • 13. Sir G, Goker Bagca B, Yigitturk G, et al. Antagonistic Effect of Oxytocin and Tacrolimus Combination on Adipose Tissue - Derived Mesenchymal Stem Cells: Antagonistic effect of oxytocin and tacrolimus. Biomed Pharmacother. 2018;97:1173-1181. doi:10.1016/j.biopha.2017.10.076
  • 14. Gonwa TA, Hricik DE, Brinker K, Grinyo JM, Schena FP. Improved renal function in sirolimus-treated renal transplant patients after early cyclosporine elimination. Transplantation. Published online 2002. doi:10.1097/00007890-200212150-00013
  • 15. Horoz M. Calcineurin and mTOR Inhibitor Nephrotoxicity. Turkiye Klin Nephrol. 2016;9(2):44-52.
  • 16. Hoogduijn MJ, Crop MJ, Korevaar SS, et al. Susceptibility of Human Mesenchymal Stem Cells to Tacrolimus, Mycophenolic Acid, and Rapamycin. Transplantation. 2008;86(9):1283-1291. doi:10.1097/TP.0b013e31818aa536
  • 17. Buron F, Perrin H, Malcus C, et al. Human Mesenchymal Stem Cells and Immunosuppressive Drug Interactions in Allogeneic Responses: An In Vitro Study Using Human Cells. Transplant Proc. 2009;41(8):3347-3352. doi:10.1016/j.transproceed. 2009.08.030
  • 18. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36(4):568-584. doi:10.1016/j.biocel.2003.11.001
  • 19. Peng Y, Ke M, Xu L, et al. Donor-derived mesenchymal stem cells combined with low-dose tacrolimus prevent acute rejection after renal transplantation: A clinical pilot study. Transplantation. Published online 2013. doi:10.1097/TP.0b013e3182754c53
  • 20. Cutler C, Antin JH. Sirolimus for GVHD prophylaxis in allogeneic stem cell transplantation. Bone Marrow Transplant. Published online 2004. doi:10.1038/sj.bmt.1704604
  • 21. Perruccio K, Mastrodicasa E, Arcioni F, et al. Sirolimus-Based Immunosuppression as GvHD Prophylaxis after Bone Marrow Transplantation for Severe Aplastic Anaemia: A Case Report and Review of the Literature. Case Rep Hematol. Published online 2015. doi:10.1155/2015/321602
  • 22. Biray Avci, C, Yilmaz Susluer, S, Sigva Dogan, ZO, Sogutlu, F, Dundar, M, Gunduz C. The effect of rapamycin in prostate cancer cell lines. Ege J Med. 2013;52(1):7-14.
  • 23. Ikegami T, Matsuzaki Y. Ursodeoxycholic acid: Mechanism of action and novel clinical applications. Hepatol Res. Published online 2008. doi:10.1111/j.1872-034X.2007.00297.x
  • 24. Ruutu T, Eriksson B, Remes K, et al. Ursodeoxycholic acid for the prevention of hepatic complications in allogeneic stem cell transplantation. Blood. Published online 2002. doi:10.1182/blood- 2001-12-0159
  • 25. Ruutu T, Juvonen E, Remberger M, et al. Improved Survival with Ursodeoxycholic Acid Prophylaxis in Allogeneic Stem Cell Transplantation: Long-Term Follow-Up of a Randomized Study. Biol Blood Marrow Transplant. 2014;20(1):135-138. doi: 10.1016/j.bbmt.2013.10.014
  • 26. Wang L, Han Q, Chen H, et al. Allogeneic bone marrow mesenchymal stem cell transplantation in patients with UDCA-resis- tant primary biliary cirrhosis. Stem Cells Dev. Published online 2014. doi:10.1089/scd.2013.0500
  • 27. Lazaridis KN, Gores GJ, Lindor KD. Ursodeoxycholic acid “mechanisms of action and clinical use in hepatobiliary disorders.” J Hepatol. Published online 2001. doi:10.1016/S0168- 8278(01)00092-7
  • 28. Poupon R, Poupon RE. Ursodeoxycholic acid therapy of chronic cholestatic conditions in adults and children. Pharmacol Ther. 1995;66(1):1-15.
  • 29. Qi H-P, Wei S-Q, Gao X-C, et al. Ursodeoxycholic acid prevents selenite-induced oxidative stress and alleviates cataract formation: In vitro and in vivo studies. Mol Vis. 2012;18(January): 151-160.
  • 30. M K. mTOR signaling pathway and mTOR inhibitors in the treatment of cancer. Dicle Med J. 2013;40(1):156-160.
  • 31. Rodrigues CMP, Fan G, Ma X, Kren BT, Steer CJ. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Invest. 1998;101(12):2790-2799. doi:10.1172/JCI1325
  • 32. Ji WJ, Qu Q, Jin Y, Zhao L, He XD. Ursodeoxycholic acid inhibits hepatocyte-like cell apoptosis by down-regulating the expressions of Bax and Caspase-3. Natl Med J China. Published online 2009. doi:10.3760/cma.j.issn.0376-2491.2009.42.014
  • 33. Amaral JD, Castro RE, Solá S, Steer CJ, Rodrigues CMP. p53 is a key molecular target of ursodeoxycholic acid in regulating apoptosis. J Biol Chem. Published online 2007. doi:10.1074/ jbc.M704075200
  • 34. Koga H, Sakisaka S, Ohishi M, Sata M, Tanikawa K. Nuclear DNA fragmentation and expression of Bcl-2 in primary biliary cirrhosis. Hepatology. 1997;25(5):1077-1084. doi:10.1002/ hep.510250505
  • 35. Perez MJ, Britz O. Bile-acid-induced cell injury and protection. World J Gastroenterol. 2009;15(14):1677-1689. doi:10.3748/ wjg.15.1677
  • 36. Qiao L, Yacoub A, Studer E, et al. Inhibition of the MAPK and PI3K pathways enhances UDCA-induced apoptosis in primary rodent hepatocytes. Hepatology. 2002;35(4):779-789. doi:10.1053/jhep.2002.32533
  • 37. Rodrigues CMP, Fan G, Wong PY, Kren BT, Steer CJ. Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. Mol Med. Published online 1998. doi:10.1007/bf03401914
  • 38. Hempfling W, Dilger K, Beuers U. Systematic review: Ursodeoxycholic acid - Adverse effects and drug interactions. Aliment Pharmacol Ther. Published online 2003. doi:10.1046/j.1365- 2036.2003.01792.x
  • 39. Kowdley K V. Ursodeoxycholic acid therapy in hepatobiliary disease. Am J Med. Published online 2000. doi:10.1016/S0002- 9343(00)00318-1
  • 40. Kotb MA. Molecular mechanisms of ursodeoxycholic acid toxicity & side effects: Ursodeoxycholic acid freezes regeneration & induces hibernation mode. Int J Mol Sci. 2012;13(7):8882- 8914. doi:10.3390/ijms13078882
  • 41. Serviddio G, Pereda J, Pallardó F V., et al. Ursodeoxycholic Acid Protects against Secondary Biliary Cirrhosis in Rats by Preventing Mitochondrial Oxidative Stress. Hepatology. Published online 2004. doi:10.1002/hep.20101
  • 42. Tsagarakis NJ, Drygiannakis I, Batistakis AG, Kolios G, Kouroumalis EA. A concentration-dependent effect of ursodeoxycholate on apoptosis and caspases activities of HepG2 hepatocellular carcinoma cells. Eur J Pharmacol. 2010;640(1-3):1-7. doi:10.1016/j.ejphar.2010.04.023
  • 43. Akdemir A, Sahin C, Erbas O, Yeniel AO, Sendag F. Is ursodeoxycholic acid crucial for ischemia/reperfusion-induced ovarian injury in rat ovary? Arch Gynecol Obstet. 2015;292(2):445-450. doi:10.1007/s00404-015-3646-9
There are 43 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Articles
Authors

Esra Arısu Naghavı This is me 0000-0003-1663-6970

Bakiye Goker Bagca 0000-0002-5714-7455

Senem Tekeli This is me 0000-0002-9586-341X

Gürkan Yiğittürk 0000-0002-5315-253X

Burak Gökçe 0000-0002-7038-6434

Canberk Tomruk 0000-0002-3810-3705

Türker Çavuşoğlu 0000-0001-7100-7080

Çığır Avcı 0000-0001-8251-4520

Cumhur Gündüz 0000-0002-6593-3237

Yiğit Uyanıkgil 0000-0002-4016-0522

Project Number 2015/TIP/010
Publication Date September 30, 2022
Submission Date February 27, 2022
Acceptance Date July 26, 2022
Published in Issue Year 2022 Volume: 29 Issue: 3

Cite

Vancouver Arısu Naghavı E, Goker Bagca B, Tekeli S, Yiğittürk G, Gökçe B, Tomruk C, Çavuşoğlu T, Avcı Ç, Gündüz C, Uyanıkgil Y. INVESTIGATION OF URSODEOXYCHOLIC ACID EFFECTS ON SIROLIMUS TREATED ADIPOSE TISSUE-DERIVED MESENCHYMAL STEM CELLS. Med J SDU. 2022;29(3):324-3.

                                                                                               14791 


Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi/Medical Journal of Süleyman Demirel University is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International.