Research Article
BibTex RIS Cite
Year 2023, Volume: 3 Issue: 2, 71 - 84, 10.01.2024
https://doi.org/10.14744/seatific.2023.0008

Abstract

References

  • Abkowitz, M. A. (1964). Lectures on Ship Hydrodynamics Steering and Maneuverability Technical Report. Hydro and Aerodynamic Laboratory, Lyngby, Denmark. Technical Report Hy-5.
  • Ackermann, S. (2008). Prediction of Suboff Hydrodynamics using ANSYS CFX Software. Launceston. National Centre of Maritime Engineering and Hydrodynamics.
  • Alin, N., Bensow, R., Fureby, C., & Huuva, T. (2010). Current Capabilities of DES and LES for Submarines at Straight Course. Journal of Ship Research, 54, 184−196.
  • Arslan, S. (2013). Su altı araçları için yeni geliştirilen hidrodinamik modelleme yöntemleri kullanılarak otonom bir su altı aracının hidrodinamik karakteristiğinin incelenmesi. [Master Thesis]. Istanbul Technical University.
  • Atik, H. (2021). Türbülans modellerinin DARPA SUBOFF statik sürükleme testi üzerinden incelenmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 3, 1509–1522.
  • Bull, P. (1996). The validation of CFD predictions of nominal wake for the SUBOFF fully appended geometry. 21st Symposium on Naval Hydrodynamics, Trondheim, Norway, 1061–1076.
  • Can, M. (2014). Numerical simulation of hydrodynamic planar motion mechanism test for underwater vehicles [Master Thesis]. The Graduate School of Natural and Applied Sciences of Middle East Technical University.
  • Cardenas, P., & de Barros, E. A. (2019). Estimation of AUV Hydrodynamic Coefficients Using Analytical and System Identification Approaches. IEEE Journal of Oceanic Engineering, 1–20.
  • Carrica, P. M., Kerkvliet, M., Quadvlieg, F., & Martin, J. E. (2016). CFD Simulations and Experiments of a Maneuvering Generic Submarine and Prognosis for Simulation of Near Surface Operation. 31st Symp. Nav. Hydrodyn. (ONR), Monterey, CA, 11–16.
  • Carrica, P. M., Kim, Y., & Martin, J. E. (2019). Near-surface self propulsion of a generic submarine in calm water and waves. Ocean Engineering, 183, 87–105.
  • Celik, I., Ghina, U., Roache, P., Fretias, C.J., & Raad, H.C.P.E. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering, 130(7), Article 078001.
  • Chase, N., & Carrica, P. M. (2013). Submarine propeller computations and application to self-Propulsion of DARPA suboff, Ocean Engineering, 60, 68−80.
  • Crook, L.B. (1990). Resistance for DARPA SUBOFF as Represented by Model 5470. DTRC/SHD-1298-07.
  • Davidson, K. S. M., & Schiff, L. I. (1946). Turning and course keeping qualities. Trans Soc Nav Archit Mar Eng, 54.
  • Duman, S., Sezen, S., & Bal, S. (2018). Propeller Effects on Maneuvering of a Submerged Body. A. Yücel Odabaşı Colloquium Series 3 rd International Meeting - Progress in Propeller Cavitation and its Consequences: Experimental and Computational Methods for Predictions. 15th – 16th November, Istanbul, Turkey. Efremov, D. V., & Milanov, E. M. (2019). Hydrodynamics of DARPA SUBOFF submarine at shallowly immersion conditions. In: TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, 13, 2.
  • Fallows, C. D. (2004). Characterization of the propulsion system of autonomous underwater vehicles. [Doctorial dissertation]. University of Southampton.
  • Fell, B. J. (2009). Structured Mesh Optimization and CFD Simulation of the Fully Appended DARPA Suboff Model [Master Thesis]. University of Tasmania, National Centre for Maritime Engineering and Hydrodynamics.
  • Gertler, M., Hagen, G. (1967). Standard equations of motion for submarine simulation. Technical Report AD653861,
  • Groves, N.C., Huang, T.T., & Chang, M.S. (1989). Geometric Characteristics of Darpa Suboff Models, David Taylor Research Center, Ship Hydromechanics Department, Report Number DTRC/SHD-1298-01
  • ITTC Resistance Committee. (2017). Uncertainty analysis in CFD Verification and validation methodology and procedures. ITTC - Recomm. Proced. Guidel., p. 1–13.
  • Joung TH., Sammut, K., He, F., & Lee, SK. (2012). Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis. International Journal of Naval Architecture and Ocean Engineering, 4, 44−56.
  • Kahramanoglu, E. (2023). Numerical investigation of the scale effect on the horizontal maneuvering derivatives of an underwater vehicle. Ocean Enginering, 272, Article 113883.
  • Kırıkbaş, O, Kınacı, Ö. K., & Bal, Ş. (2021a). Sualtı araçlarının manevra karakteristiklerinin değerlendirilmesi: manevra analizlerinde kullanılan yaklaşımlar. GMO Journal of Ship and Marine Technology, 219, 6–58.
  • Kırıkbaş, O, Kınacı, Ö. K., & Bal, Ş. (2021b). Su altı araçlarının manevra karakteristiklerinin değerlendirilmesi: akışkan sınırlarının etkileri. GMO Journal of Ship and Marine Technology, 220, 135–174.
  • Kimber, N., & Marshfield, W. (1993). Design and testing of control surfaces for the autosub demonstrator test vehicle. Technical report, DRA Haslar.
  • Liu, H., & Huang, T. (1998). Summary of DARPA SUBOFF experimental program data. Report No. CRDKNSWC/HD-1298-11.
  • Mackay, M. (1988). Flow Visualization Experiments with Submarine Models in a Wind Tunnel, Defence Research Establishment Atlantic. Technical Memorandum 88/204.
  • McDonald, H., Whitfield, D. (1996). Self-propelled maneuvering underwater vehicles. 21st Symposium on Naval Hydrodynamics, Trondheim.
  • Phillips, A., Furlong, M., &Turnock, S.R. (2007). The use of Computational Fluid Dynamics to Determine the Dynamic Stability of an Autonomous Underwater Vehicle. file:///Users/kareyayincilik11/Downloads/ The_use_of_Computational_Fluid_Dynamics_to_ Determi%20(1).pdf
  • Phillips, A., Furlong, M., & Turnock, S.R. (2010). Virtual planar motion mechanism tests of the autonomous underwater vehicle autosub. STG-Conference /Lectureday “CFD in Ship Design”, 2007.
  • Phillips, A., Furlong, M., & Turnock, S. R. (2011). The use of computational fluid dynamics to aid cost-effective hydrodynamic design of autonomous underwater vehicles. Sage Journals, 224(4), 239−254.
  • Roache, P. J. (1998). Verification of codes and calculations. AIAA Journal, 36(5), 696−702.
  • Roddy, R.F. (1990). Investigation of the Stability and Control Characteristics of Several Configurations of the DARPA SUBOFF Model (DTRC 5470) from Captive- Model Experiments. DTRC/SHD-1298-08.
  • Saeidinezhad, A., Dehghan, A. A., & Manshadi, M. D. (2015). Experimental investigation of hydrodynamic characteristics of a submersible vehicle model with a non-axisymmetric nose in pitch maneuver. Ocean Engineering, 100, 26−34.
  • SNAME. (1950). Nomenclature for treating the motion of a submerged body through a fluid (Technical and Research Bulletin No. 1–5). SNAME.
  • Thomas, R. (2003). Performance evaluation of the propulsion system for the autonomous underwater vehicle C-scout [Unpublished Master Thesis]. Faculty of Engineering and Applied Science Memorial University of Newfoundland.
  • Thomas, R., Bose, N., & Williams, D. (2003). Propulsive Performance of the Autonomous Underwater Vehicle C-Scout. OCEANS 2003, San Diego, ABD. Toxopeus, S., & Vaz, G. (2009). Calculation of Current or Maneuvering Forces using a Viscous-Flow Solver. In Proceedings of OMAE2009, Honolulu, Hawaii, USA.
  • Vaz, G., Toxopeus, S., & Holmes, S. (2010). Calculation of Maneuvering Forces on Submarines Using Two Viscous-Flow Solvers’, OMAE 2010, Shanghai, China.
  • Zhao, B., Yun, Y., Hu, F., Sun, J., Wu, D., & Huang, B. (2022). Hydrodynamic coefficients of the DARPA SUBOFF AFF-8 in rotating arm maneuver: Part I: Test technology and validation. Ocean Engineering, 266, Article 113148.
  • Wu, C. S., He, S. I., Zhu, D. X., & Min, G. (2006). Numerical simulation of microbubble flow around an axisym- metric body. Journal of Hydrodynamics, 18(3), 217–222.

Numerical Investigation of the Resistance and Static Drift Condition of the Autosub Submarine

Year 2023, Volume: 3 Issue: 2, 71 - 84, 10.01.2024
https://doi.org/10.14744/seatific.2023.0008

Abstract

This study involves the force and moment calculations using the 3/4rd scale model and full-scale geometries of the Autosub submarine. Computational fluid dynamics calculations are performed using RANS equations and the k-ω turbulence models. The resistance analyses are conducted for speeds ranging from 0 to 2 m/s. Static drift analyses are conducted between the range of 0 to 10 degrees drift angles at 2 degrees intervals. A mesh independence study is carried out to determine the adequate mesh density. The mesh structure is determined in the analyses for 6 degrees of drift angle and this mesh structure is used for other drift angles, and the results are compared with experimental results from open literature. Full-scale resistance analyses are conducted, and the calculated resistance forces are compared with the experimental and empirical data. The force and moment values obtained from static drift and resistance analyses are found to be consistent with experimental results in the literature.

References

  • Abkowitz, M. A. (1964). Lectures on Ship Hydrodynamics Steering and Maneuverability Technical Report. Hydro and Aerodynamic Laboratory, Lyngby, Denmark. Technical Report Hy-5.
  • Ackermann, S. (2008). Prediction of Suboff Hydrodynamics using ANSYS CFX Software. Launceston. National Centre of Maritime Engineering and Hydrodynamics.
  • Alin, N., Bensow, R., Fureby, C., & Huuva, T. (2010). Current Capabilities of DES and LES for Submarines at Straight Course. Journal of Ship Research, 54, 184−196.
  • Arslan, S. (2013). Su altı araçları için yeni geliştirilen hidrodinamik modelleme yöntemleri kullanılarak otonom bir su altı aracının hidrodinamik karakteristiğinin incelenmesi. [Master Thesis]. Istanbul Technical University.
  • Atik, H. (2021). Türbülans modellerinin DARPA SUBOFF statik sürükleme testi üzerinden incelenmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 3, 1509–1522.
  • Bull, P. (1996). The validation of CFD predictions of nominal wake for the SUBOFF fully appended geometry. 21st Symposium on Naval Hydrodynamics, Trondheim, Norway, 1061–1076.
  • Can, M. (2014). Numerical simulation of hydrodynamic planar motion mechanism test for underwater vehicles [Master Thesis]. The Graduate School of Natural and Applied Sciences of Middle East Technical University.
  • Cardenas, P., & de Barros, E. A. (2019). Estimation of AUV Hydrodynamic Coefficients Using Analytical and System Identification Approaches. IEEE Journal of Oceanic Engineering, 1–20.
  • Carrica, P. M., Kerkvliet, M., Quadvlieg, F., & Martin, J. E. (2016). CFD Simulations and Experiments of a Maneuvering Generic Submarine and Prognosis for Simulation of Near Surface Operation. 31st Symp. Nav. Hydrodyn. (ONR), Monterey, CA, 11–16.
  • Carrica, P. M., Kim, Y., & Martin, J. E. (2019). Near-surface self propulsion of a generic submarine in calm water and waves. Ocean Engineering, 183, 87–105.
  • Celik, I., Ghina, U., Roache, P., Fretias, C.J., & Raad, H.C.P.E. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering, 130(7), Article 078001.
  • Chase, N., & Carrica, P. M. (2013). Submarine propeller computations and application to self-Propulsion of DARPA suboff, Ocean Engineering, 60, 68−80.
  • Crook, L.B. (1990). Resistance for DARPA SUBOFF as Represented by Model 5470. DTRC/SHD-1298-07.
  • Davidson, K. S. M., & Schiff, L. I. (1946). Turning and course keeping qualities. Trans Soc Nav Archit Mar Eng, 54.
  • Duman, S., Sezen, S., & Bal, S. (2018). Propeller Effects on Maneuvering of a Submerged Body. A. Yücel Odabaşı Colloquium Series 3 rd International Meeting - Progress in Propeller Cavitation and its Consequences: Experimental and Computational Methods for Predictions. 15th – 16th November, Istanbul, Turkey. Efremov, D. V., & Milanov, E. M. (2019). Hydrodynamics of DARPA SUBOFF submarine at shallowly immersion conditions. In: TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, 13, 2.
  • Fallows, C. D. (2004). Characterization of the propulsion system of autonomous underwater vehicles. [Doctorial dissertation]. University of Southampton.
  • Fell, B. J. (2009). Structured Mesh Optimization and CFD Simulation of the Fully Appended DARPA Suboff Model [Master Thesis]. University of Tasmania, National Centre for Maritime Engineering and Hydrodynamics.
  • Gertler, M., Hagen, G. (1967). Standard equations of motion for submarine simulation. Technical Report AD653861,
  • Groves, N.C., Huang, T.T., & Chang, M.S. (1989). Geometric Characteristics of Darpa Suboff Models, David Taylor Research Center, Ship Hydromechanics Department, Report Number DTRC/SHD-1298-01
  • ITTC Resistance Committee. (2017). Uncertainty analysis in CFD Verification and validation methodology and procedures. ITTC - Recomm. Proced. Guidel., p. 1–13.
  • Joung TH., Sammut, K., He, F., & Lee, SK. (2012). Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis. International Journal of Naval Architecture and Ocean Engineering, 4, 44−56.
  • Kahramanoglu, E. (2023). Numerical investigation of the scale effect on the horizontal maneuvering derivatives of an underwater vehicle. Ocean Enginering, 272, Article 113883.
  • Kırıkbaş, O, Kınacı, Ö. K., & Bal, Ş. (2021a). Sualtı araçlarının manevra karakteristiklerinin değerlendirilmesi: manevra analizlerinde kullanılan yaklaşımlar. GMO Journal of Ship and Marine Technology, 219, 6–58.
  • Kırıkbaş, O, Kınacı, Ö. K., & Bal, Ş. (2021b). Su altı araçlarının manevra karakteristiklerinin değerlendirilmesi: akışkan sınırlarının etkileri. GMO Journal of Ship and Marine Technology, 220, 135–174.
  • Kimber, N., & Marshfield, W. (1993). Design and testing of control surfaces for the autosub demonstrator test vehicle. Technical report, DRA Haslar.
  • Liu, H., & Huang, T. (1998). Summary of DARPA SUBOFF experimental program data. Report No. CRDKNSWC/HD-1298-11.
  • Mackay, M. (1988). Flow Visualization Experiments with Submarine Models in a Wind Tunnel, Defence Research Establishment Atlantic. Technical Memorandum 88/204.
  • McDonald, H., Whitfield, D. (1996). Self-propelled maneuvering underwater vehicles. 21st Symposium on Naval Hydrodynamics, Trondheim.
  • Phillips, A., Furlong, M., &Turnock, S.R. (2007). The use of Computational Fluid Dynamics to Determine the Dynamic Stability of an Autonomous Underwater Vehicle. file:///Users/kareyayincilik11/Downloads/ The_use_of_Computational_Fluid_Dynamics_to_ Determi%20(1).pdf
  • Phillips, A., Furlong, M., & Turnock, S.R. (2010). Virtual planar motion mechanism tests of the autonomous underwater vehicle autosub. STG-Conference /Lectureday “CFD in Ship Design”, 2007.
  • Phillips, A., Furlong, M., & Turnock, S. R. (2011). The use of computational fluid dynamics to aid cost-effective hydrodynamic design of autonomous underwater vehicles. Sage Journals, 224(4), 239−254.
  • Roache, P. J. (1998). Verification of codes and calculations. AIAA Journal, 36(5), 696−702.
  • Roddy, R.F. (1990). Investigation of the Stability and Control Characteristics of Several Configurations of the DARPA SUBOFF Model (DTRC 5470) from Captive- Model Experiments. DTRC/SHD-1298-08.
  • Saeidinezhad, A., Dehghan, A. A., & Manshadi, M. D. (2015). Experimental investigation of hydrodynamic characteristics of a submersible vehicle model with a non-axisymmetric nose in pitch maneuver. Ocean Engineering, 100, 26−34.
  • SNAME. (1950). Nomenclature for treating the motion of a submerged body through a fluid (Technical and Research Bulletin No. 1–5). SNAME.
  • Thomas, R. (2003). Performance evaluation of the propulsion system for the autonomous underwater vehicle C-scout [Unpublished Master Thesis]. Faculty of Engineering and Applied Science Memorial University of Newfoundland.
  • Thomas, R., Bose, N., & Williams, D. (2003). Propulsive Performance of the Autonomous Underwater Vehicle C-Scout. OCEANS 2003, San Diego, ABD. Toxopeus, S., & Vaz, G. (2009). Calculation of Current or Maneuvering Forces using a Viscous-Flow Solver. In Proceedings of OMAE2009, Honolulu, Hawaii, USA.
  • Vaz, G., Toxopeus, S., & Holmes, S. (2010). Calculation of Maneuvering Forces on Submarines Using Two Viscous-Flow Solvers’, OMAE 2010, Shanghai, China.
  • Zhao, B., Yun, Y., Hu, F., Sun, J., Wu, D., & Huang, B. (2022). Hydrodynamic coefficients of the DARPA SUBOFF AFF-8 in rotating arm maneuver: Part I: Test technology and validation. Ocean Engineering, 266, Article 113148.
  • Wu, C. S., He, S. I., Zhu, D. X., & Min, G. (2006). Numerical simulation of microbubble flow around an axisym- metric body. Journal of Hydrodynamics, 18(3), 217–222.
There are 40 citations in total.

Details

Primary Language English
Subjects Maritime Engineering (Other)
Journal Section Research Article
Authors

Sare Nur Çıplakkaya

Yasemin Arıkan Özden 0000-0001-9909-0859

Early Pub Date January 10, 2024
Publication Date January 10, 2024
Submission Date June 13, 2023
Published in Issue Year 2023 Volume: 3 Issue: 2

Cite

APA Çıplakkaya, S. N., & Arıkan Özden, Y. (2024). Numerical Investigation of the Resistance and Static Drift Condition of the Autosub Submarine. Seatific Journal, 3(2), 71-84. https://doi.org/10.14744/seatific.2023.0008

Seatific Journal

Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License