Review
BibTex RIS Cite

ERKEN ÇOCUKLUK ÇAĞI ÇÜRÜĞÜ MİKROBİYOTASINDA GÜNCEL TÜRLER: DERLEME

Year 2022, Volume: 9 Issue: 3, 920 - 926, 26.12.2022
https://doi.org/10.15311/selcukdentj.1015848

Abstract

71 aylık ve daha küçük çocuklarda en az iki adet kaviteli veya kavitesiz çürük, çürük nedeniyle kaybedilmiş diş ya da dolgulu diş yüzeyinin varlığı; erken çocukluk çağı çürüğü (ECC) olarak ifade edilmektedir. Çocuklarda; en fazla gözlenen kronik hastalıklardan biri ECC’ dir. Bu çürükler erken evrede teşhis edildiklerinde genellikle geri dönüşümlü enfeksiyonlar olup, önlenebilir özellik taşımaktadır. Etkin korunma stratejileri ile bu dönemde çocukların ağız sağlığı kalitelerinin geliştirilebilir olması kadar hastalığın mikrobiyal, dental ve fizyolojik yaklaşımlarının bilinmesi de gerekmektedir. ECC tedavi edilmediği takdirde ise ağrı, bakteriyemi, büyüme ve gelişim geriliği, erken süt dişi kaybı gibi komplikasyonların yanında sonuçların doğurduğu yüksek maliyetli tedavilere sebep olmaktadır. Ağız mikrobiyotası; 700 çeşitten fazla bakteri, mantar, virüs ve parazitlerin bir arada bulunduğu mikroorganizma topluluğu olup; diş fırçalama ve diyet alışkanlığına ek olarak yaşla birlikte çeşitlilik göstermektedir. Doğum anında steril kabul edilen ağız mikroflorası çocuğun annesi veya bakıcısı tarafından vertikal geçişle kontamine olması sonucu bu özelliğini kaybeder. Bu çalışmamızda değişen dinamiklere sahip olan oral mikrobiyotanın ECC ile olan ilişkisi ile ilgili güncel literatür verilerinin derlenmesi amaçlanmıştır. Sonuç olarak ECC ile oral mikrobiyota ilişkisinin doğru yorumlanması erken dönemde çocuklarda gözlenen çürük lezyonlarının durdurulması ve biyomimetik şekilde tedavi edilmesi açısından büyük önem taşımaktadır.

References

  • Kagihara LE, Niederhauser VP, Stark M. Assessment, management, and prevention of early childhood caries. J Am Acad Nurse Pract. 2009;21(1):1-10.
  • Thitasomakul S, Thearmontree A, Piwat S, Chankanka O, Pithpornchaiyakul W, Teanpaisan R, et al. A longitudinal study of early childhood caries in 9- to 18-month-old Thai infants. Community Dent Oral Epidemiol. 2006;34(6):429-36.
  • Takaoka LA, Goulart AL, Kopelman BI, Weiler RM. Enamel defects in the complete primary dentition of children born at term and preterm. Pediatr Dent. 2011;33(2):171-6.
  • Tomar SL, Reeves AF. Changes in the oral health of US children and adolescents and dental public health infrastructure since the release of the Healthy People 2010 Objectives. Acad Pediatr. 2009;9(6):388-95.
  • Tonpe M, Patil RU, Kadam A, Bayad P, Shetty V, Vinay V. Comparative evaluation of two caries detection systems for detecting the prevalence of early childhood caries: a cross-sectional study. Dental Res J. 2019;16(4):221.
  • Musinguzi N, Kemoli AM, Okullo I. Prevalence and treatment needs for early childhood caries among 3-5-year-old children from a rural community in Uganda. Front Public Health. 2019;7:259.
  • Sbaraini A, Carter SM, Evans RW, Blinkhorn A. Experiences of dental care: what do patients value? BMC Health Serv Res. 2012;12(2):177.
  • Nascımento, M.M., et al., Second Era of OMICS in Caries Research: Moving Past the Phase of Disillusionment. J Dent Res, 2017. 96(7): p. 733-740.
  • Lamont RJ, Koo H, Hajıshengallıs G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol, 2018. 16(12): p. 745-759.
  • Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG. The human oral microbiome. J Bacteriol. 2010;192:5002–5017.
  • Wilbert SA, Mark Welch JL, Borisy GG. Spatial ecology of the human tongue dorsum microbiome. Cell Rep. 2020;30:4003–4015.e3.
  • Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: Dynamic communities and host interactions. Nat Rev Microbiol. 2018;16:745–759.
  • Bowen WH, Burne RA, Wu H, Koo H. Oral biofilms: Pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol. 2018;26:229–242.
  • Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, Gillevet PM. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 2010;6:e1000713.
  • Lof M, Janus MM, Krom BP. Metabolic Interactions between bacteria and fungi in commensal oral biofilms. J Fungi. 2017;3:40.
  • Grassl N, Kulak NA, Pichler G, Geyer PE, Jung J, Schubert S, Sinitcyn P, Cox J, Mann M. Ultra-deep and quantitative saliva proteome reveals dynamics of the oral microbiome. Genome Med. 2016;8:44.
  • Belstrøm D, Holmstrup P, Bardow A, Kokaras A, Fiehn NE, Paster BJ. Temporal stability of the salivary microbiota in oral health. PLoS ONE. 2016;11:e0147472.
  • Kaan AMM, Kahharova D, Zaura E. Acquisition and establishment of the oral microbiota. Periodontol. 2000. 2021;86:123–141.
  • Dzidic M, Collado MC, Abrahamsson T, Artacho A, Stensson M, Jenmalm MC, Mira A. Oral microbiome development during childhood: An ecological succession influenced by postnatal factors and associated with tooth decay. ISME J. 2018;12:2292–2306.
  • Oba PM, Holscher HD, Mathai RA, Kim J, Swanson KS. Diet influences the oral microbiota of infants during the first six months of life. Nutrients. 2020;12:3400.
  • Horowitz HS. Research issues in early childhood caries. Community Dent Oral Epidemiol. 1998;26:67-81.
  • Baltacı E, Baygın Ö, Korkmaz FM. Erken Çocukluk Çağı Çürükleri: Güncel Literatür Derlemesi. Turkiye Klinikleri. Dishekimligi Bilimleri Dergisi, 2017, 23.3.
  • Gross EL, Beall CJ, Kutsch SR, Firestone ND, Leys EJ, Griffen AL. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One. 2012;7(10):e47722.
  • Obata J, Takeshita T, Shibata Y, Wataru Y, Masako U, Akifumi A, Yoshihisa Y. Identification of the microbiota in carious dentin lesions using 16S rRNA gene sequencing. PLoS One. 2014;9: e103712.
  • Facklam R. What happened to the Streptococci: Overview of taxonomic and nomenclature changes. Clinical Microbiology Reviews. 2002;15:613–630.
  • Kreth J, Merritt J, Qi F. Bacterial and host interactions of oral Streptococci. DNA and Cell Biology. 2009;28(8):397–403.
  • Wang BY, Kuramitsu HK. Interactions between oral bac‐ teria: Inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii. Applied and Environment Microbiology. 2005;71:354–362.
  • Tanner AC, Mathney JM, Kent RL, Chalmers NI, Hughes CV, Loo CY, Pradhan N, Kanasi E, Hwang J, Dahlan MA, Papadopolou E, Dewhirst FE. Cultivable anaerobic microbiota of severe early childhood caries. Journal of Clinical Microbiology. 2011;49:1464–1474.
  • Richards VP, Alvarez AJ, Luce AR, Bedenbaugh M, Mitchell ML, Burne RA, Nascimento MM. Microbiomes of sitespecific dental plaques from children with different caries status. Infection and Immunity. 2017;85(8):e00106‐17.
  • Agnello M, Marques J, Cen L, Mittermuller B, Huang A, Chaichanasakul Tran N, Shi W, He X, Schroth RJ. Microbiome asso‐ ciated with severe caries in Canadian First Nations children. Journal of Dental Research. 2017;96:1378–1385.
  • Jiang S, Gao X, Jin L, Lo E. Salivary microbiome diversity in caries‐free and caries‐affected children. International Journal of Molecular Sciences. 2016;17(12):1978.
  • Kanasi E, Dewhirst FE, Chalmers NI, Kent R, Moore A, Hughes CV, Pradhan N, Loo CY, Tanner AC. Clonal analysis of the microbiota of severe early childhood caries. Caries Research. 2010;44:485–497.
  • Kanasi E, Johansson I, Lu S C, Kressin NR, Nunn ME, Kent R, Tanner AC. Microbial risk markers for childhood caries in pediatricians' offices. Journal of Dental Research. 2010;89:378–383.
  • Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL, Boches SK, Dewhirst FE, Griffen AL. Molecular analysis of bacterial species associated with childhood caries. Journal of Clinical Microbiology. 2002;40:1001–1009.
  • Xu H, Hao W, Zhou Q, Wang W, Xia Z, Liu C, Chen X, Qin M, Chen F. Plaque bacterial microbiome diversity in children younger than 30 months with or without caries prior to eruption of second primary molars. PLoS One. 2014;9:e89269.
  • Corby PM, Bretz WA, Hart TC, Schork NJ, Wessel J, Lyons‐Weiler J, Paster BJ. Heritability of oral microbial species in caries‐active and caries‐free twins. Twin Research and Human Genetics. 2007;10:821–828.
  • Kreth J, Zhang Y, Herzberg MC. Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. Journal of Bacteriology. 2008;190:4632–4640.
  • Crielaard W, Zaura E, Schuller AA, Huse SM, Montijn RC, Keijser BJ. Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Medical Genomics. 2011;4:22.

NOVEL SPECIES IN MICROBIOTA OF EARLY CHILDHOOD CARIES: A REVIEW

Year 2022, Volume: 9 Issue: 3, 920 - 926, 26.12.2022
https://doi.org/10.15311/selcukdentj.1015848

Abstract

Presence of at least two caries with or without cavities, teeth lost due to caries or filled tooth surfaces in children 71 months of age and younger; is referred to as early childhood caries (ECC). In children; ECC is one of the most common chronic diseases. When these caries are diagnosed at an early stage, they are usually reversible infections and are preventable. It is necessary to know the microbial, dental and physiological approaches of the disease as well as to improve the oral health quality of children in this period with effective prevention strategies. If ECC is not treated, it causes complications such as pain, bacteremia, growth and developmental retardation, early loss of primary teeth, as well as costly treatments with consequences. Oral microbiota; is a microorganism community that contains more than 700 types of bacteria, fungi, viruses and parasites; in addition to tooth brushing and dietary habits, it varies with age. Oral microflora, which is considered sterile at the time of birth, loses this feature as a result of vertical contamination by the child's mother or caregiver. In this study, it is aimed to compile the current literature data on the relationship between the oral microbiota, which has changing dynamics, and ECC. As a result, the correct interpretation of the relationship between ECC and oral microbiota is of great importance in terms of preventing caries lesions observed in children in the early period and treating them in a biomimetic manner.

References

  • Kagihara LE, Niederhauser VP, Stark M. Assessment, management, and prevention of early childhood caries. J Am Acad Nurse Pract. 2009;21(1):1-10.
  • Thitasomakul S, Thearmontree A, Piwat S, Chankanka O, Pithpornchaiyakul W, Teanpaisan R, et al. A longitudinal study of early childhood caries in 9- to 18-month-old Thai infants. Community Dent Oral Epidemiol. 2006;34(6):429-36.
  • Takaoka LA, Goulart AL, Kopelman BI, Weiler RM. Enamel defects in the complete primary dentition of children born at term and preterm. Pediatr Dent. 2011;33(2):171-6.
  • Tomar SL, Reeves AF. Changes in the oral health of US children and adolescents and dental public health infrastructure since the release of the Healthy People 2010 Objectives. Acad Pediatr. 2009;9(6):388-95.
  • Tonpe M, Patil RU, Kadam A, Bayad P, Shetty V, Vinay V. Comparative evaluation of two caries detection systems for detecting the prevalence of early childhood caries: a cross-sectional study. Dental Res J. 2019;16(4):221.
  • Musinguzi N, Kemoli AM, Okullo I. Prevalence and treatment needs for early childhood caries among 3-5-year-old children from a rural community in Uganda. Front Public Health. 2019;7:259.
  • Sbaraini A, Carter SM, Evans RW, Blinkhorn A. Experiences of dental care: what do patients value? BMC Health Serv Res. 2012;12(2):177.
  • Nascımento, M.M., et al., Second Era of OMICS in Caries Research: Moving Past the Phase of Disillusionment. J Dent Res, 2017. 96(7): p. 733-740.
  • Lamont RJ, Koo H, Hajıshengallıs G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol, 2018. 16(12): p. 745-759.
  • Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG. The human oral microbiome. J Bacteriol. 2010;192:5002–5017.
  • Wilbert SA, Mark Welch JL, Borisy GG. Spatial ecology of the human tongue dorsum microbiome. Cell Rep. 2020;30:4003–4015.e3.
  • Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: Dynamic communities and host interactions. Nat Rev Microbiol. 2018;16:745–759.
  • Bowen WH, Burne RA, Wu H, Koo H. Oral biofilms: Pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol. 2018;26:229–242.
  • Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, Gillevet PM. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 2010;6:e1000713.
  • Lof M, Janus MM, Krom BP. Metabolic Interactions between bacteria and fungi in commensal oral biofilms. J Fungi. 2017;3:40.
  • Grassl N, Kulak NA, Pichler G, Geyer PE, Jung J, Schubert S, Sinitcyn P, Cox J, Mann M. Ultra-deep and quantitative saliva proteome reveals dynamics of the oral microbiome. Genome Med. 2016;8:44.
  • Belstrøm D, Holmstrup P, Bardow A, Kokaras A, Fiehn NE, Paster BJ. Temporal stability of the salivary microbiota in oral health. PLoS ONE. 2016;11:e0147472.
  • Kaan AMM, Kahharova D, Zaura E. Acquisition and establishment of the oral microbiota. Periodontol. 2000. 2021;86:123–141.
  • Dzidic M, Collado MC, Abrahamsson T, Artacho A, Stensson M, Jenmalm MC, Mira A. Oral microbiome development during childhood: An ecological succession influenced by postnatal factors and associated with tooth decay. ISME J. 2018;12:2292–2306.
  • Oba PM, Holscher HD, Mathai RA, Kim J, Swanson KS. Diet influences the oral microbiota of infants during the first six months of life. Nutrients. 2020;12:3400.
  • Horowitz HS. Research issues in early childhood caries. Community Dent Oral Epidemiol. 1998;26:67-81.
  • Baltacı E, Baygın Ö, Korkmaz FM. Erken Çocukluk Çağı Çürükleri: Güncel Literatür Derlemesi. Turkiye Klinikleri. Dishekimligi Bilimleri Dergisi, 2017, 23.3.
  • Gross EL, Beall CJ, Kutsch SR, Firestone ND, Leys EJ, Griffen AL. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One. 2012;7(10):e47722.
  • Obata J, Takeshita T, Shibata Y, Wataru Y, Masako U, Akifumi A, Yoshihisa Y. Identification of the microbiota in carious dentin lesions using 16S rRNA gene sequencing. PLoS One. 2014;9: e103712.
  • Facklam R. What happened to the Streptococci: Overview of taxonomic and nomenclature changes. Clinical Microbiology Reviews. 2002;15:613–630.
  • Kreth J, Merritt J, Qi F. Bacterial and host interactions of oral Streptococci. DNA and Cell Biology. 2009;28(8):397–403.
  • Wang BY, Kuramitsu HK. Interactions between oral bac‐ teria: Inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii. Applied and Environment Microbiology. 2005;71:354–362.
  • Tanner AC, Mathney JM, Kent RL, Chalmers NI, Hughes CV, Loo CY, Pradhan N, Kanasi E, Hwang J, Dahlan MA, Papadopolou E, Dewhirst FE. Cultivable anaerobic microbiota of severe early childhood caries. Journal of Clinical Microbiology. 2011;49:1464–1474.
  • Richards VP, Alvarez AJ, Luce AR, Bedenbaugh M, Mitchell ML, Burne RA, Nascimento MM. Microbiomes of sitespecific dental plaques from children with different caries status. Infection and Immunity. 2017;85(8):e00106‐17.
  • Agnello M, Marques J, Cen L, Mittermuller B, Huang A, Chaichanasakul Tran N, Shi W, He X, Schroth RJ. Microbiome asso‐ ciated with severe caries in Canadian First Nations children. Journal of Dental Research. 2017;96:1378–1385.
  • Jiang S, Gao X, Jin L, Lo E. Salivary microbiome diversity in caries‐free and caries‐affected children. International Journal of Molecular Sciences. 2016;17(12):1978.
  • Kanasi E, Dewhirst FE, Chalmers NI, Kent R, Moore A, Hughes CV, Pradhan N, Loo CY, Tanner AC. Clonal analysis of the microbiota of severe early childhood caries. Caries Research. 2010;44:485–497.
  • Kanasi E, Johansson I, Lu S C, Kressin NR, Nunn ME, Kent R, Tanner AC. Microbial risk markers for childhood caries in pediatricians' offices. Journal of Dental Research. 2010;89:378–383.
  • Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL, Boches SK, Dewhirst FE, Griffen AL. Molecular analysis of bacterial species associated with childhood caries. Journal of Clinical Microbiology. 2002;40:1001–1009.
  • Xu H, Hao W, Zhou Q, Wang W, Xia Z, Liu C, Chen X, Qin M, Chen F. Plaque bacterial microbiome diversity in children younger than 30 months with or without caries prior to eruption of second primary molars. PLoS One. 2014;9:e89269.
  • Corby PM, Bretz WA, Hart TC, Schork NJ, Wessel J, Lyons‐Weiler J, Paster BJ. Heritability of oral microbial species in caries‐active and caries‐free twins. Twin Research and Human Genetics. 2007;10:821–828.
  • Kreth J, Zhang Y, Herzberg MC. Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. Journal of Bacteriology. 2008;190:4632–4640.
  • Crielaard W, Zaura E, Schuller AA, Huse SM, Montijn RC, Keijser BJ. Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Medical Genomics. 2011;4:22.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Dentistry
Journal Section Review
Authors

Serenad Çırakoğlu 0000-0002-8776-8228

Hamit Tunç 0000-0002-1513-9860

Publication Date December 26, 2022
Submission Date October 28, 2021
Published in Issue Year 2022 Volume: 9 Issue: 3

Cite

Vancouver Çırakoğlu S, Tunç H. ERKEN ÇOCUKLUK ÇAĞI ÇÜRÜĞÜ MİKROBİYOTASINDA GÜNCEL TÜRLER: DERLEME. Selcuk Dent J. 2022;9(3):920-6.