Technical Brief
BibTex RIS Cite
Year 2023, Volume: 41 Issue: 6, 1287 - 1291, 29.12.2023

Abstract

References

  • REFERENCES
  • [1] Ozdal M, Gurkok S, Ozdal OG. Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone. 3 Biotech 2017;7:117. [CrossRef]
  • [2] Ozdal M. A new strategy for the efficient production of pyocyanin, a versatile pigment, in Pseudomonas aeruginosa OG1 via toluene addition. 3 Biotech 2019;9:18. [CrossRef]
  • [3] Ozdal M, Gurkok S, Ozdal OG, Kurbanoglu EB. Enhancement of pyocyanin production by Pseudomonas aeruginosa via the addition of n-hexane as an oxygen vector. Biocatal Agric Biotechnol 2019;22:101365. [CrossRef]
  • [4] Sun H, Wang L, Nie H, Diwu Z, Nie M, Zhang B. Optimization and characterization of rhamnolipid production by Pseudomonas aeruginosa NY3 using waste frying oil as the sole carbon. Biotechnol Prog 2021:e3155.
  • [5] Jahan R, Bodratti AM, Tsianou M, Alexandridis P. Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications. Adv Colloid Interface Sci 2020;275:102061. [CrossRef]
  • [6] Gurkok S. Important parameters necessary in the bioreactor for the mass production of biosurfactants. In Green Sustainable Process for Chemical and Environmental Engineering and Science. Elsevier, 2021;347365. [CrossRef]
  • [7] Markets and Markets. Available at https://www.marketsandmarkets.com/Market-Reports/biosurfactant-market-163644922.html. Accessed March 24, 2020.
  • [8] Rivera ÁD, Urbina MÁM, López VEL. Advances on research in the use of agro-industrial waste in biosurfactant production. World J Microbiol Biotechnol 2019;35:155. [CrossRef]
  • [9] Fenibo EO, Ijoma GN, Selvarajan R, Chikere CB. Microbial Surfactants: The Next Generation Multifunctional Biomolecules for Applications in the Petroleum Industry and Its Associated Environmental Remediation. Microorganisms 2019;7:581. [CrossRef]
  • [10] Liepins J, Balina K, Soloha R, Berzina I, Lukasa LK, Dace E. Glycolipid Biosurfactant Production from Waste Cooking Oils by Yeast: Review of Substrates, Producers and Products. Fermentation 2021;7:136. [CrossRef]
  • [11] Singh P, Patil Y, Rale V. Biosurfactant production: emerging trends and promising strategies. J Appl Microbiol 2019;126:213. [CrossRef]
  • [12] Markande AR, Patel D, Varjani S. A review on biosurfactants: properties, applications and current developments. Bioresour Technol 2021;124963. [CrossRef]
  • [13] Kim SK, Kim YC, Lee S, Kim JC, Yun MY, Kim IS. Insecticidal activity of rhamnolipid isolated from Pseudomonas sp. EP-3 against green peach aphid (Myzus persicae). J Agric Food Chem 2011;59:934938. [CrossRef]
  • [14] Remichkova M, Galabova D, Roeva I, Karpenko E, Shulga A, Galabov AS. Anti-herpesvirus activities of Pseudomonas sp. S-17 rhamnolipid and its complex with alginate. Z Naturforsch C 2008;63:7581. [CrossRef]
  • [15] Jadhav JV, Anbu P, Yadav S, Pratap AP, Kale SB. Sunflower Acid Oil‐Based Production of Rhamnolipid Using Pseudomonas aeruginosa and Its Application in Liquid Detergents. J Surfactants Deterg 2019;22:463476. [CrossRef]
  • [16] Elshikh M, Moya‐Ramírez I, Moens H, Roelants SLKW, Soetaert W, Marchant R, Banat IM. Rhamnolipids and lactonic sophorolipids: natural antimicrobial surfactants for oral hygiene. J Appl Microbiol 2017;123:11111123. [CrossRef]
  • [17] Kumar R, Das AJ. Application of rhamnolipids in medical sciences. In Rhamnolipid Biosurfactant. Springer, Singapore, 2018;7987. [CrossRef]
  • [18] Ozdal M, Ozdal OG, Algur OF. Isolation and characterization of α-endosulfan degrading bacteria from the microflora of cockroaches. Pol J Microbiol 2016;65. [CrossRef]
  • [19] Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem 1956;28:350356. [CrossRef]
  • [20] Ozdal M, Kurbanoglu EB. Use of chicken feather peptone and sugar beet molasses as low cost substrates for xanthan production by Xanthomonas campestris MO-03. Fermentation 2019;5:9. [CrossRef]
  • [21] Özdal M, Gürkök S, Özdal ÖG, Kurbanoğlu EB. Rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and ram horn peptone. In AIP Conference Proceedings. AIP Publishing LLC, 2017;1833:020102. [CrossRef]
  • [22] Pacífico C, Fernandes P, de Carvalho CCCR. Mycobacterial response to organic solvents and possible implications on crossresistance with antimicrobial agents. Front Microbiol 2018;9:961. [CrossRef]
  • [23] Sumarsih S, Nimatuzahroh F, Puspitasari M, Rusdiana M. Effect of aliphatic and aromatic hydrocarbons on the oxygenase production from hydrocarbonoclastic bacteria. J Chem Technol Metall 2017;52:10621069.
  • [24] Gaur R, Khare SK. Cellular response mechanisms in Pseudomonas aeruginosa PseA during growth in organic solvents. Lett Appl Microbiol 2009;49:372377. [CrossRef]
  • [25] Thumar JT, Singh SP. Organic solvent tolerance of an alkaline protease from salt-tolerant alkaliphilic Streptomyces clavuligerus strain Mit-1. J Ind Microbiol Biotechnol 2009;36:211. [CrossRef]
  • [26] Lim JM, Yun JW. Enhanced production of exopolysaccharides by supplementation of toluene in submerged culture of an edible mushroom Collybia maculata TG-1. Process Biochem 2006;41:16201626. [CrossRef]
  • [27] He P, Wu S, Pan L, Sun S, Mao D, Xu C. Effect of Tween 80 and acetone on the secretion, structure and antioxidant activities of exopolysaccharides from Lentinus tigrinus. Food Sci Biotechnol 2016;54:290295. [CrossRef]
  • [28] Tan Q, Ai Q, Xu Q, Li F, Yu J. Polymorphonuclear leukocytes or hydrogen peroxide enhance biofilm development of mucoid Pseudomonas aeruginosa. Mediators Inflamm 2018;8151362. [CrossRef]
  • [29] Sanjivkumar M, Deivakumari M, Immanuel G. Investigation on spectral and biomedical characterization of rhamnolipid from a marine associated bacterium Pseudomonas aeruginosa (DKB1). Arch Microbiol 2021;203:2297–2314. [CrossRef]
  • [30] Ozdal M, Janek T, Satpute SK. Biosurfactants: From renewable resources to innovative applications. Front Bioeng Biotechnol 2022;10:988646. [CrossRef]

Increasing the yield of rhamnolipid produced by Pseudomonas aeruginosa by using toluene

Year 2023, Volume: 41 Issue: 6, 1287 - 1291, 29.12.2023

Abstract

Pseudomonas aeruginosa produce biosurfactant with biotechnological importance through fer-mentation. The main factors affecting biosurfactant production are the type of organism used and the components of the fermentation medium (pH, temperature, oxygen, carbon and nitro-gen sources, various salts). Increasing the production of rhamnolipid produced in low amounts has been the subject of many studies. In this study, toluene was used to increase rhamnolipid production. The addition of 0.2% toluene at the 48th h resulted in the highest rhamnolipid for-mation (3.0 g/L), which is a significant 30% increase over the control (2.3 g/L). While rham-nolipid production increased with the addition of toluene, bacterial biomass decreased. This study revealed that adding toluene to the fermentation medium with a new strategy significantly increases rhamnolipid production. Addition of toluene is an easy and effective way to increase rhamnolipid production in P. aeruginosa fermentation processes. The present research is the first to demonstrate that P. aeruginosa improves rhamnolipid synthesis when toluene is added.

References

  • REFERENCES
  • [1] Ozdal M, Gurkok S, Ozdal OG. Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone. 3 Biotech 2017;7:117. [CrossRef]
  • [2] Ozdal M. A new strategy for the efficient production of pyocyanin, a versatile pigment, in Pseudomonas aeruginosa OG1 via toluene addition. 3 Biotech 2019;9:18. [CrossRef]
  • [3] Ozdal M, Gurkok S, Ozdal OG, Kurbanoglu EB. Enhancement of pyocyanin production by Pseudomonas aeruginosa via the addition of n-hexane as an oxygen vector. Biocatal Agric Biotechnol 2019;22:101365. [CrossRef]
  • [4] Sun H, Wang L, Nie H, Diwu Z, Nie M, Zhang B. Optimization and characterization of rhamnolipid production by Pseudomonas aeruginosa NY3 using waste frying oil as the sole carbon. Biotechnol Prog 2021:e3155.
  • [5] Jahan R, Bodratti AM, Tsianou M, Alexandridis P. Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications. Adv Colloid Interface Sci 2020;275:102061. [CrossRef]
  • [6] Gurkok S. Important parameters necessary in the bioreactor for the mass production of biosurfactants. In Green Sustainable Process for Chemical and Environmental Engineering and Science. Elsevier, 2021;347365. [CrossRef]
  • [7] Markets and Markets. Available at https://www.marketsandmarkets.com/Market-Reports/biosurfactant-market-163644922.html. Accessed March 24, 2020.
  • [8] Rivera ÁD, Urbina MÁM, López VEL. Advances on research in the use of agro-industrial waste in biosurfactant production. World J Microbiol Biotechnol 2019;35:155. [CrossRef]
  • [9] Fenibo EO, Ijoma GN, Selvarajan R, Chikere CB. Microbial Surfactants: The Next Generation Multifunctional Biomolecules for Applications in the Petroleum Industry and Its Associated Environmental Remediation. Microorganisms 2019;7:581. [CrossRef]
  • [10] Liepins J, Balina K, Soloha R, Berzina I, Lukasa LK, Dace E. Glycolipid Biosurfactant Production from Waste Cooking Oils by Yeast: Review of Substrates, Producers and Products. Fermentation 2021;7:136. [CrossRef]
  • [11] Singh P, Patil Y, Rale V. Biosurfactant production: emerging trends and promising strategies. J Appl Microbiol 2019;126:213. [CrossRef]
  • [12] Markande AR, Patel D, Varjani S. A review on biosurfactants: properties, applications and current developments. Bioresour Technol 2021;124963. [CrossRef]
  • [13] Kim SK, Kim YC, Lee S, Kim JC, Yun MY, Kim IS. Insecticidal activity of rhamnolipid isolated from Pseudomonas sp. EP-3 against green peach aphid (Myzus persicae). J Agric Food Chem 2011;59:934938. [CrossRef]
  • [14] Remichkova M, Galabova D, Roeva I, Karpenko E, Shulga A, Galabov AS. Anti-herpesvirus activities of Pseudomonas sp. S-17 rhamnolipid and its complex with alginate. Z Naturforsch C 2008;63:7581. [CrossRef]
  • [15] Jadhav JV, Anbu P, Yadav S, Pratap AP, Kale SB. Sunflower Acid Oil‐Based Production of Rhamnolipid Using Pseudomonas aeruginosa and Its Application in Liquid Detergents. J Surfactants Deterg 2019;22:463476. [CrossRef]
  • [16] Elshikh M, Moya‐Ramírez I, Moens H, Roelants SLKW, Soetaert W, Marchant R, Banat IM. Rhamnolipids and lactonic sophorolipids: natural antimicrobial surfactants for oral hygiene. J Appl Microbiol 2017;123:11111123. [CrossRef]
  • [17] Kumar R, Das AJ. Application of rhamnolipids in medical sciences. In Rhamnolipid Biosurfactant. Springer, Singapore, 2018;7987. [CrossRef]
  • [18] Ozdal M, Ozdal OG, Algur OF. Isolation and characterization of α-endosulfan degrading bacteria from the microflora of cockroaches. Pol J Microbiol 2016;65. [CrossRef]
  • [19] Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem 1956;28:350356. [CrossRef]
  • [20] Ozdal M, Kurbanoglu EB. Use of chicken feather peptone and sugar beet molasses as low cost substrates for xanthan production by Xanthomonas campestris MO-03. Fermentation 2019;5:9. [CrossRef]
  • [21] Özdal M, Gürkök S, Özdal ÖG, Kurbanoğlu EB. Rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and ram horn peptone. In AIP Conference Proceedings. AIP Publishing LLC, 2017;1833:020102. [CrossRef]
  • [22] Pacífico C, Fernandes P, de Carvalho CCCR. Mycobacterial response to organic solvents and possible implications on crossresistance with antimicrobial agents. Front Microbiol 2018;9:961. [CrossRef]
  • [23] Sumarsih S, Nimatuzahroh F, Puspitasari M, Rusdiana M. Effect of aliphatic and aromatic hydrocarbons on the oxygenase production from hydrocarbonoclastic bacteria. J Chem Technol Metall 2017;52:10621069.
  • [24] Gaur R, Khare SK. Cellular response mechanisms in Pseudomonas aeruginosa PseA during growth in organic solvents. Lett Appl Microbiol 2009;49:372377. [CrossRef]
  • [25] Thumar JT, Singh SP. Organic solvent tolerance of an alkaline protease from salt-tolerant alkaliphilic Streptomyces clavuligerus strain Mit-1. J Ind Microbiol Biotechnol 2009;36:211. [CrossRef]
  • [26] Lim JM, Yun JW. Enhanced production of exopolysaccharides by supplementation of toluene in submerged culture of an edible mushroom Collybia maculata TG-1. Process Biochem 2006;41:16201626. [CrossRef]
  • [27] He P, Wu S, Pan L, Sun S, Mao D, Xu C. Effect of Tween 80 and acetone on the secretion, structure and antioxidant activities of exopolysaccharides from Lentinus tigrinus. Food Sci Biotechnol 2016;54:290295. [CrossRef]
  • [28] Tan Q, Ai Q, Xu Q, Li F, Yu J. Polymorphonuclear leukocytes or hydrogen peroxide enhance biofilm development of mucoid Pseudomonas aeruginosa. Mediators Inflamm 2018;8151362. [CrossRef]
  • [29] Sanjivkumar M, Deivakumari M, Immanuel G. Investigation on spectral and biomedical characterization of rhamnolipid from a marine associated bacterium Pseudomonas aeruginosa (DKB1). Arch Microbiol 2021;203:2297–2314. [CrossRef]
  • [30] Ozdal M, Janek T, Satpute SK. Biosurfactants: From renewable resources to innovative applications. Front Bioeng Biotechnol 2022;10:988646. [CrossRef]
There are 31 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Technical Note
Authors

Havva Nur Yarlı This is me 0000-0002-6650-1487

Murat Özdal 0000-0001-8800-1128

Publication Date December 29, 2023
Submission Date September 15, 2021
Published in Issue Year 2023 Volume: 41 Issue: 6

Cite

Vancouver Yarlı HN, Özdal M. Increasing the yield of rhamnolipid produced by Pseudomonas aeruginosa by using toluene. SIGMA. 2023;41(6):1287-91.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/