Research Article
BibTex RIS Cite
Year 2024, Volume: 42 Issue: 2, 503 - 515, 30.04.2024

Abstract

References

  • REFERENCES
  • [1] Van der Pol B. A theory of the amplitude of free and forced triode vibrations. Radio Review (London) 1920;1:754–762.
  • [2] Van der Pol B. LXXXVIII. On “relaxation-oscillations.” London Edinburgh Philos Mag J Sci 1926;2:978–992. [CrossRef]
  • [3] Van der Pol B, van der Mark J. Frequency demultiplication. Nature 1927;120:363–364. [CrossRef]
  • [4] Van der Pol B. The nonlinear theory of electric oscillations. Proceed Inst Radio Eng 1934;22:1051–1086. [CrossRef]
  • [5] Liénard A. Etude des oscillations entretenues. Rev Gen Electr (France) 1928;23:901912,946–954.
  • [6] Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line simulating nerve axon. Proceed IRE 1962;50:2061–2070. [CrossRef]
  • [7] Dinh TP, Demongeot J, Baconnier P, Benchetrit G. Simulation of a biological oscillator: the respiratory system. J Theor Biol 1983;103:113–132. [CrossRef]
  • [8] Atlas GM, Desiderio MC. Solutions to the Van der Pol equation: a model of aortic blood flow. IEEE. In Proceedings of the IEEE 32nd Annual Northeast Bioengineering Conference,IEEE 2006:143–144.
  • [9] Han M. Bifurcation Theory of Limit Cycles. Beijing: Science Press; 2013.
  • [10] Slight TJ, Romeira B, Wang L, Figueiredo JM, Wasige E, Ironside CN. A Liénard oscillator resonant tunnelling diode-laser diode hybrid integrated circuit: model and experiment. IEEE J Quantum Electron 2008;44:1158–1163. [CrossRef]
  • [11] Kingston SL, Kapitaniak T. Rich dynamics of memristor based Liénard systems. . In Mem-Elements for Neuromorphic Circuits with Artificial Intelligence Applications. New York: Academic Press; 2021. p. 125–145. [CrossRef]
  • [12] Çakır K, Mutlu R, Karakulak E. Ters-Paralel Bağlı Schottky Diyot Dizisi Tabanlı Van der Pol Osilatörü Devresinin Modellenmesi ve LTspice ve Simulink Kullanarak Analizi. EMO Bilimsel Dergi 2021;11:81– 91.
  • [13] Doutetien EA, Yehossou AR, Mallick P, Rath B, Delphin Monsia M. On the General Solutions of a Nonlinear Pseudo-Oscillator Equation and Related Quadratic Liénard Systems. Proceed Indian Nat Sci Acad 2020;86:154987. [CrossRef]
  • [14] Akplogan ARO, Adjaï KKD, Akande J, Avossevou GYH, Monsia MD. Modified Van der Pol-Helmholtz oscillator equation with exact harmonic solutions Res Sq 2022. [Epub ahead of print]. doi: 10.21203/rs.3.rs-1229125/v1 [CrossRef]
  • [15] Chandrasekar VK, Senthilvelan M, Lakshmanan M. Unusual Liénard-type nonlinear oscillator. Phys Rev E 2005;72:066203. [CrossRef]
  • [16] Tuna SE. Synchronization analysis of coupled Lienard-type oscillators by averaging. Automatica 2012:1885–1891. [CrossRef]
  • [17] Sun X. Multiple limit cycles of some strongly nonlinear Liénard–Van der Pol oscillator. Appl Math Comput 2015;270:620–630. [CrossRef]
  • [18] Kpomahou YJF, Adéchinan JA. Nonlinear dynamics and active control in a liénard-type oscillator under parametric and external periodic excitations. Am J Comput Appl Math 2020;10:48–61.
  • [19] Gubbiotti G, Nucci MC. Noether symmetries and the quantization of a Lienard-type nonlinear oscillator. J Nonlinear Math Phys 2014;21:248–264. [CrossRef]
  • [20] Sinelshchikov DI. Nonlocal deformations of autonomous invariant curves for Liénard equations with quadratic damping. Chaos Solit Fract 2021;152:111412. [CrossRef]
  • [21] Bhattacharyya S, Ghosh A, Ray DS. Microscopic quantum generalization of classical Liénard oscillators. Phys Rev E 2021;103:012118. [CrossRef]
  • [22] Deka JP, Sarma AK, Govindarajan A, Kulkarni M. Multifaceted nonlinear dynamics in PT-symmetric coupled Liénard oscillators. Nonlinear Dyn 2020;100:16291640. [CrossRef]
  • [23] Karayaka Ü, Alakuş C, Mutlu R, Karakulak E. Making Chua’s Diode With A Schottky Diode-Bridge-Fed Jfet Mosfet. Trakya Üniv Mühendislik Bilim Derg 2021;22:41–50.
  • [24] Kennedy MP. Robust OP Amp realization of Chua’s circuit. Frequenz 1992;46. [CrossRef]
  • [25] 1N5819 Datasheet(PDF) - Shenzhen Luguang Electronic Technology Co., Ltd n.d. https://www.alldatasheet.com/datasheet-pdf/pdf/479637/LUGUANG/1N5819.html (Accessed on Feb 22, 2022).
  • [26] BF245 pdf, BF245 Description, BF245 Datasheet, BF245 view ::: ALLDATASHEET ::: n.d. https://pdf1.alldatasheet.com/datasheet-pdf/view/44472/SIEMENS/BF245.html (Accessed on Apr 30, 2022).

Modeling and analysis of schottky diode bridge and JFET based liénard oscillator circuit

Year 2024, Volume: 42 Issue: 2, 503 - 515, 30.04.2024

Abstract

Liénard Oscillator circuit has numerous variations. Nowadays, due to the developments of semiconductor technology, such an oscillator can be made using various semiconductor cir-cuit elements. In this study, it has been shown that a Liénard Oscillator can also be made using a Schottky diode bridge and a JFET based nonlinear resistor. First, the new Liénard Oscillator topology is given, then, the dynamic model of the circuit is derived, and the simulations of the circuit are made. The currents, voltages and limit cycle of the Liénard Oscillator circuit are obtained with simulations using LTspice circuit analysis program. The simulations have confirmed that the circuit operates as a Liénard Oscillator.

References

  • REFERENCES
  • [1] Van der Pol B. A theory of the amplitude of free and forced triode vibrations. Radio Review (London) 1920;1:754–762.
  • [2] Van der Pol B. LXXXVIII. On “relaxation-oscillations.” London Edinburgh Philos Mag J Sci 1926;2:978–992. [CrossRef]
  • [3] Van der Pol B, van der Mark J. Frequency demultiplication. Nature 1927;120:363–364. [CrossRef]
  • [4] Van der Pol B. The nonlinear theory of electric oscillations. Proceed Inst Radio Eng 1934;22:1051–1086. [CrossRef]
  • [5] Liénard A. Etude des oscillations entretenues. Rev Gen Electr (France) 1928;23:901912,946–954.
  • [6] Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line simulating nerve axon. Proceed IRE 1962;50:2061–2070. [CrossRef]
  • [7] Dinh TP, Demongeot J, Baconnier P, Benchetrit G. Simulation of a biological oscillator: the respiratory system. J Theor Biol 1983;103:113–132. [CrossRef]
  • [8] Atlas GM, Desiderio MC. Solutions to the Van der Pol equation: a model of aortic blood flow. IEEE. In Proceedings of the IEEE 32nd Annual Northeast Bioengineering Conference,IEEE 2006:143–144.
  • [9] Han M. Bifurcation Theory of Limit Cycles. Beijing: Science Press; 2013.
  • [10] Slight TJ, Romeira B, Wang L, Figueiredo JM, Wasige E, Ironside CN. A Liénard oscillator resonant tunnelling diode-laser diode hybrid integrated circuit: model and experiment. IEEE J Quantum Electron 2008;44:1158–1163. [CrossRef]
  • [11] Kingston SL, Kapitaniak T. Rich dynamics of memristor based Liénard systems. . In Mem-Elements for Neuromorphic Circuits with Artificial Intelligence Applications. New York: Academic Press; 2021. p. 125–145. [CrossRef]
  • [12] Çakır K, Mutlu R, Karakulak E. Ters-Paralel Bağlı Schottky Diyot Dizisi Tabanlı Van der Pol Osilatörü Devresinin Modellenmesi ve LTspice ve Simulink Kullanarak Analizi. EMO Bilimsel Dergi 2021;11:81– 91.
  • [13] Doutetien EA, Yehossou AR, Mallick P, Rath B, Delphin Monsia M. On the General Solutions of a Nonlinear Pseudo-Oscillator Equation and Related Quadratic Liénard Systems. Proceed Indian Nat Sci Acad 2020;86:154987. [CrossRef]
  • [14] Akplogan ARO, Adjaï KKD, Akande J, Avossevou GYH, Monsia MD. Modified Van der Pol-Helmholtz oscillator equation with exact harmonic solutions Res Sq 2022. [Epub ahead of print]. doi: 10.21203/rs.3.rs-1229125/v1 [CrossRef]
  • [15] Chandrasekar VK, Senthilvelan M, Lakshmanan M. Unusual Liénard-type nonlinear oscillator. Phys Rev E 2005;72:066203. [CrossRef]
  • [16] Tuna SE. Synchronization analysis of coupled Lienard-type oscillators by averaging. Automatica 2012:1885–1891. [CrossRef]
  • [17] Sun X. Multiple limit cycles of some strongly nonlinear Liénard–Van der Pol oscillator. Appl Math Comput 2015;270:620–630. [CrossRef]
  • [18] Kpomahou YJF, Adéchinan JA. Nonlinear dynamics and active control in a liénard-type oscillator under parametric and external periodic excitations. Am J Comput Appl Math 2020;10:48–61.
  • [19] Gubbiotti G, Nucci MC. Noether symmetries and the quantization of a Lienard-type nonlinear oscillator. J Nonlinear Math Phys 2014;21:248–264. [CrossRef]
  • [20] Sinelshchikov DI. Nonlocal deformations of autonomous invariant curves for Liénard equations with quadratic damping. Chaos Solit Fract 2021;152:111412. [CrossRef]
  • [21] Bhattacharyya S, Ghosh A, Ray DS. Microscopic quantum generalization of classical Liénard oscillators. Phys Rev E 2021;103:012118. [CrossRef]
  • [22] Deka JP, Sarma AK, Govindarajan A, Kulkarni M. Multifaceted nonlinear dynamics in PT-symmetric coupled Liénard oscillators. Nonlinear Dyn 2020;100:16291640. [CrossRef]
  • [23] Karayaka Ü, Alakuş C, Mutlu R, Karakulak E. Making Chua’s Diode With A Schottky Diode-Bridge-Fed Jfet Mosfet. Trakya Üniv Mühendislik Bilim Derg 2021;22:41–50.
  • [24] Kennedy MP. Robust OP Amp realization of Chua’s circuit. Frequenz 1992;46. [CrossRef]
  • [25] 1N5819 Datasheet(PDF) - Shenzhen Luguang Electronic Technology Co., Ltd n.d. https://www.alldatasheet.com/datasheet-pdf/pdf/479637/LUGUANG/1N5819.html (Accessed on Feb 22, 2022).
  • [26] BF245 pdf, BF245 Description, BF245 Datasheet, BF245 view ::: ALLDATASHEET ::: n.d. https://pdf1.alldatasheet.com/datasheet-pdf/view/44472/SIEMENS/BF245.html (Accessed on Apr 30, 2022).
There are 27 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research Articles
Authors

Kübra Çakır 0000-0003-4762-5780

Reşat Mutlu 0000-0003-0030-7136

Publication Date April 30, 2024
Submission Date February 22, 2022
Published in Issue Year 2024 Volume: 42 Issue: 2

Cite

Vancouver Çakır K, Mutlu R. Modeling and analysis of schottky diode bridge and JFET based liénard oscillator circuit. SIGMA. 2024;42(2):503-15.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/