Research Article
BibTex RIS Cite
Year 2024, Volume: 42 Issue: 3, 875 - 884, 12.06.2024

Abstract

References

  • REFERENCES
  • [1] Ke Y, Ye K, Grossniklaus HE, Archer DR, Joshi HC, Kapp JA. Noscapine inhibits tumor growth with little toxicity to normal tissues or inhibition of immune responses. Cancer Immun Immunother 2000;49:217225. [CrossRef]
  • [2] Jackson T, Chougule MB, Ichite N, Patlolla RR, Singh M. Antitumor activity of noscapine in human non-small cell lung cancer xenograft model. Cancer Chemother Pharmacol 2008;63:117–126. [CrossRef]
  • [3] Sood D, Kumar, N, Singh, A, Tomar V, Dass SK, Chandra R. Deciphering the binding mechanism of noscapine with lysozyme: biophysical and chemoinformatic approaches. ACS Omega 2019;4:16233−16241. [CrossRef]
  • [4] Karna1 P, Rida PCG, Pannu V, Gupta KK, Dalton WB, Joshi H, et al. Novel microtubule-modulating noscapinoid triggers apoptosis by inducing spindle multipolarity via centrosome amplification and declustering. Cell Death Differ 2011;18:632–644. [CrossRef]
  • [5] Jayaraj RL, Beiram R, Azimullah S, Nagoor Meeran MF, Shreesh K, Ojha AA, et al. Noscapine prevents rotenone-ınduced neurotoxicity: ınvolvement of oxidative stress, neuroinflammation and autophagy pathways. Molecules 2021;26:4627. [CrossRef]
  • [6] Ebrahimi SA. Noscapine, a possible drug candidate for attenuation of cytokine release associated with SARS-CoV-2. Drug Dev Res 2020;26:765–767. [CrossRef]
  • [7] Mooraki A, Jenabi A, Jabbari M, Zolfaghari MI, Javanmardi SZ, Mahmoudian M, et al. Noscapine suppresses angiotensin converting enzyme inhibitors-induced cough. Nephrology 2005;10:348–350. [CrossRef]
  • [8] Mahmoudian M, Rezvani M, Rohani M, Benaissa F, Jalili M, Ghourchian S. A novel effect of noscapine on patients with massive ischemic stroke: A pseudo-randomized clinical trial. Iran J Neurol 2015;14::12–16.
  • [9] Vahabzadeh G, Rahbar-Roshandel N, Ebrahimi SA, Mahmoudian M. Neuroprotective effect of noscapine on cerebral oxygenglucose deprivation injury. Pharmacol Rep 2015;67:281–288. [CrossRef]
  • [10] Yan AI, Kseniya YF, Rustam TM, Andrey KB, Alexey KB, Anastasiya AV, et al. Antibacterial activity of noscapine analogs. Bioorganic Med Chem Lett 2021;43:128055. [CrossRef]
  • [11] Dahlstrom B, Mellstrand T, Lofdahl CG, Johansson M. Pharmacokinetic properties of noscapine. Eur J Clin Pharmacol 1982;22:535539. [CrossRef]
  • [12] Karlsson MO, Dahlstrom D, Eckernas SA, Johansson M, Tufvesson AT. Pharmacokinetics of oral noscapine. Eur J Clin Pharmacol 1990;39:275–279. [CrossRef]
  • [13] Bitoun E, Micheloni A, Lamant L, Bonnart C, Tartaglia-Polcini A, Cobbold C, et al. LEKTI proteolytic processing in human primary keratinocytes, tissue distribution and defective expression in Netherton syndrome. Hum Mol Genet 2003;12:2417–2430. [CrossRef]
  • [14] Sebak S, Mirzaei M, Malhotra M, Kulamarva A, Prakash S. Human serum albumin nanoparticles as an efficient Noscapine drug delivery system for potential use in breast cancer: preparation and in vitro analysis. Int J Nanomed 2010;5:525. [CrossRef]
  • [15] Abdalla MO, Aneja R, Dean D, Rangari, V, Russell A, Jaynes J, et al. Synthesis and characterization of Noscapine loaded magnetic polymeric nanoparticles. J Magn Magn Mater 2010;322:190−196. [CrossRef]
  • [16] Kar F, Hacioglu C, Goncu Y, Sogut I, Senturk H, Donmez DB, et al. In vivo assessment of the effect of hexagonal boron nitride nanoparticles on biochemical, histopathological, oxidant and antioxidant status. J Cluster Sci 2021;32:517529. [CrossRef]
  • [17] Kar F, Söğüt İ, Hacıoğlu C, Göncü Y, Şentürk H, Şenat A, Eren, Ö., et al. Hexagonal boron nitride nanoparticles trigger oxidative stress by modulating thiol/disulfide homeostasis, Hum Exp Toxicol 2021;40:1572–1583. [CrossRef]
  • [18] Kun Z, Yong Z, Cong X, Wanlu Z, Hongfeng W, Jiaoqing T, et al. Application of hydroxyapatite nanoparticles in tumor-associated bone segmental defect. Appl Sci Eng 2019;5:116. [CrossRef]
  • [19] Fu Q, Rahaman MN, Zhou N, Huang W, Wang D, Zhang L, et al. In vitro study on different cell response to spherical hydroxyapatite nanoparticles. J Biomater Appl 2008;23:37–50. [CrossRef]
  • [20] Yuan Y, Liu C, Qian J, Wang J, Zhang Y. Size-mediated cytotoxicity and apoptosis of hydroxyapatite nanoparticles in human hepatoma HepG2 cells. Biomaterials 2010;31:730–740. [CrossRef]
  • [21] Xu J, Xu P, Li Z, Huang J, Yang Z. Oxidative stress and apoptosis induced by hydroxyapatite nanoparticles in C6 cells. J Biomed Mater Res Part A 2012;100:738–745. [CrossRef]
  • [22] Han Y, Li S, Cao X, Yuan L, Wang Y, Yin Y, et al. Different inhibitory effect and mechanism of hydroxyapatite nanoparticles on normal cells and cancer cells in vitro and in vivo. Sci Rep 2015;4:7134. [CrossRef]
  • [23] Lu L, Li M, Li L, Wei S, Hu X, Wang X, et al. High-activity chitosan/nano hydroxyapatite/zoledronic acid scaffolds for simultaneous tumor inhibition, bone repair and infection eradication. Mater Sci Eng C 2008;82:225–233. [CrossRef]
  • [24] Palazzo B, Sidoti MC, Roveri N, Tampieri A, Sandri M, Bertolazzi L, et al. Controlled drug delivery from porous hydroxyapatite grafts: An experimental and theoretical approach. Mater Sci Eng 2005;25:207213. [CrossRef]
  • [25] Gamez-Meza N, Noriega-Oriega-Rodriguez JA, Medina-Juarez LA, OrtegaGarcia J, Cazarez-Casanova, R, Angulo-Guerrero O. Antioxidant activity in soybean oil of extracts from thompson grape bagasse. J Am Oil Chem 1999;76:1445. [CrossRef]
  • [26] Chang C, Yang M, Wen H, Chern J. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 2002;10:178182. [CrossRef]
  • [27] Bulduk I, Taktak F. Isolation and characterization of antitumor alkaloid from poppy capsules (papaver somniferum). J Chem 2013;2013:14. [CrossRef]
  • [28] Kuriakose TA, Kalkura SN, Palanichamy M, Arivuoli D, Dierks K, Bocelli G, et al. Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol-gel technique at low temperature. J Cryst Growth 2004;263:517523. [CrossRef]
  • [29] Ergün Y, Başpınar SM. Effect of acid passivation and H2 sputtering pretreatments on the adhesive strength of sol-gel derived Hydroxyapatite coating on titanium surface. Int J Hydrogen Energy 2017;42:2042020429. [CrossRef]
  • [30] Gün M. Investigation of the use of alginate-chitosan nanoparticles in colchicine release (master thesis). Aydın: Department of Chemistry. Adnan Menderes University, Institute of Science and Technology; 2013.
  • [31] Singh H. Singh P, Kumari K, Chandra A, Dass SK,Chandra R. A review on noscapine, and its ımpact on heme Metabolism. Curr Drug Metab 2013;14:351360. [CrossRef]
  • [33] Avuloğlu Y, Yüzbaşıoğlu D. Evaluation of genotoxic effects of 3-methyl-5-(4- carboxycyclohexylmethyl)-tetrahydro-2H-1,3,5-thiadiazine-2-thione on human peripheral lymphocytes. Pharm Biol 2017;55:1228–1233. [CrossRef]
  • [34] Ciğerci IH, Liman R, Özgül E, Konuk M. Genotoxicity of indium tin oxide by Allium and Comet tests. Cytotechnology 2015;67:157–163. [CrossRef]
  • [35] Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 2004;37:277–285. [CrossRef]
  • [36] Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem 2005;38:1103–1111. [CrossRef] [37] Zhaparova L. Synthesis of nanoparticles and nanocapsules for controlled release of the antitumor drug "Arglabin" and antituberculosis drugs (doctorial thesis). Eindhoven: Technische Universiteit Eindhoven; 2012.
  • [38] Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev 2008;108:4754–4783. [CrossRef]
  • [39] Meyers MA, Chen PY, Lin AYM, Seki Y. Biological materials: structure and mechanical properties. Prog Mater Sci 2008;53:1–20. [CrossRef]
  • [40] Hui J, Wang X. Hydroxyapatite nanocrystals: colloidal chemistry, assembly, and their biological applications, Inorg Chem Front 2014;1:215–225. [CrossRef]
  • [41] Liu TY, Chen SY, Liu DM, Liou SC. On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery. J Control Release 2005;107:112–121. [CrossRef]
  • [42] Uskovic V, Uskovic DP. Nanosized hydroxyapatite, and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res 2011;96B:152–191. [CrossRef]
  • [43] Lafisco M, Delgado-Lopez JM, Varoni EM, Tampieri A, Rimondini L, Gomez-Morales J, et al. Cell surface receptor targeted biomimetic apatite nanocrystals for cancer therapy. Small 2013;25:3834–3844. [CrossRef]
  • [44] Dumontet C, Jordan MA. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 2010;9:790–803. [CrossRef]
  • [45] Kumar N, Sood D, Spek PJ, Sharma HS, Chandra R. Molecular binding mechanism and pharmacology comparative analysis of noscapine for repurposing against SARS-CoV‑2 protease. J Proteome Res 2020;19:4678−4689. [CrossRef]
  • [46] Feng W, Li MS, Lu YP, Qi YX, Liu YX. Synthesis and microstructure of hydroxyapatite nanofibers synthesized at 37oC, Mater Chem Phys 2006;95:145149, [CrossRef]
  • [47] Cengiz B. Hidroksiapatit nanoparçacıklarının sentezi (yüksek lisans tezi). Ankara: Ankara Üniversitesi Kimya Mühendisliği Anabilim Dalı, Fen Bilimleri Enstitüsü; 2007.
  • [48] Kong L, Mu Z, Yu Y, Zhang L, Hu J. Polyethyleneimine stabilized HAPs modified with hyaluronic acid for targeted drug delivery. RSC Adv 2017;6:101790–101799. [CrossRef]
  • [49] Langit KS, Auerkaria EI. Genotoxicity and repair capability of DNA following the oral exposure to analgesic drugs: A review. AIP Conference Proceed 2021;2344:040007. [CrossRef]
  • [50] Schuler M, Muehlbauer P, Guzzie P, Eastmond DA. Noscapinehydrochloride disrupts the mitotic spindle in mammalian cells and induces aneuploidy as well as polyploidy in cultured human lymphocytes. Mutagenesis 1999;14:5156. [CrossRef]
  • [51] Gatehouse DG, Stemp G, Pascoe S, Wilcox P, Hawker J, Tweats DJ. Investigations into the induction of aneuploidy and polyploidy in mammalian cells by the anti-tussive agent noscapine hydrochloride, Mutagenesis 1991;6:279283. [CrossRef]
  • [52] Sneyd JR. Papaveretum in women of childbearing potential. BMJ 1991;303:852. [CrossRef]
  • [53] Tiveron MC, Hirsch MR, Brunet JF. The expression pattern of the transcription factor Phox2 delineates synaptic pathways of autonomous nervous. J Neurosci 1996;16:76497660. [CrossRef]
  • [54] Nemati F, Bischoff-Kont I, Salehi P, Nejad-Ebrahimi S, Mohebbia M, Bararjanian M, et al. Identification of novel anti-cancer agents by the synthesis and cellular screening of a noscapine- based library. Bioorganic Chem 2021;115:105135. [CrossRef]
  • [55] Yang YH, Liu CH, Liang YH, Lin FH, Wu KCW. Hollow mesoporous hydroxyapatite nanoparticles (hmHANPs) with enhanced drug loading and pH-responsive release properties for intracellular drug delivery. J Mater Chem B 2013;1:24472450. [CrossRef]
  • [56] Chen M, Feng W, Lin S, He C, Gao Y Wang, H. Antitumor efficacy of a PLGA composite nanofiber embedded with doxorubicin@MSNs and hydroxycamptothecin@ HANPs, RSC Adv 2014;4:5334453351. [CrossRef]
  • [57] Li D, He J, Huang X, Li J, Tian H, Chen X, et al. Intracellular pH-responsive mesoporous hydroxyapatite nanoparticles for targeted release of anticancer drug. RSC Adv 2015;5:3092030928. [CrossRef]
  • [58] Xu S, Shi J, Feng D, Yang L, Cao S. Hollow hierarchical hydroxyapatite/Au/ polyelectrolyte hybrid microparticles for multi-responsive drug delivery. J Mater Chem B 2014;2:65006507. [CrossRef]
  • [59] Verma G, Barick KC, Shetake NG, Pandey BN, Hassan PA. Citrate-functionalized hydroxyapatite nanoparticles for pH-responsive drug delivery. RSC Adv 2016;6,7796877976. [CrossRef]
  • [60] Verma G, Shetake NG, Barick KC, Pandey BN, Hassan PA, Priyadarsini KI. Covalent immobilization of doxorubicin in glycine functionalized hydroxyapatite nanoparticles for pH-responsive release. New J Chem 2018;42:62836292. [CrossRef]
  • [61] Xiong H, Du S, Ni J, Zhou J, Yao J. Mitochondria and nuclei dual-targeted heterogeneous hydroxyapatite nanoparticles for enhancing the therapeutic efficacy of doxorubicin. Biomaterials 2016;94:7083. [CrossRef]
  • [62] Lee MS, Lee JE, Byun E, Kim NW, Lee K, Lee H, et al. Target-specific delivery of siRNA by stabilized calcium phosphate nanoparticles using dopa-hyaluronic acid conjugate. J Control Release 2014;192:122130. [CrossRef]
  • [63] Kong L, Mu Z, Yu Y, Zhang L, Hu J. Polyethyleneimine-stabilized hydroxyapatite nanoparticles modified with hyaluronic acid for targeted drug delivery. RSC Adv 2016;6:101790101799. [CrossRef]
  • [64] Qiu C, Wei W, Sun J, Zhang HT, Ding JS, Wang JC, et al. Systemic delivery of siRNA by hyaluronan-functionalized calcium phosphate nanoparticles for tumor-targeted therapy. Nanoscale 2016;26:1303313044. [CrossRef]

Eriocitrin derivatives and their anthelmintic potentials

Year 2024, Volume: 42 Issue: 3, 875 - 884, 12.06.2024

Abstract

De novo drug design focused on in silico research of more effective and safe drugs is the es-sential stage of pharmacophore-based drug discovery. This study aimed to evaluate the an-thelmintic potential of herbal ligand derivatives to suggest new drug scaffolds and examine fragment-based key-lock fit models of drug candidates to offer more potent drugs. The revers-ible inhibitors of the Carnitine Palmitoyltransferase 2 enzyme (CPT 2) have been evaluated as anthelmintic drug candidates because the increased CPT 2 substrate in the environment leads to the death of the nematode. Eriocitrin is a herbal molecule found in several plants, es-pecially in the citrus peel. It has never been previously investigated for anthelmintic purposes, but it is a molecule found in some anthelmintic plants. Therefore, eriocitrin was determined as the scaffold of a novel anthelmintic drug candidate. To design new eriocitrin derivatives, positions 3 and 8 on the chromene ring of eriocitrin were chosen to insert five different side groups, such as hydrogen, propylsulfanyl, acetate, phenol, and aniline. Twenty-four derivatives designed with Biovia Discovery Studio 2020 Client were docked with the antinematodal drug target rat CPT 2 using AutoDock4.2 software. ADME properties and the binding mode of the most potent derivative were investigated. For the derivative with the best-scored molecule
E05, the free binding energy was -9.08 kcal/mol, and the Ki value was calculated as 22.017 nM. E05, which had a better inhibition value than eriocitrin showed that the presence of phenol at the 3rd position in the chromene nucleus of eriocitrin facilitated CPT 2 inhibition. This research is the first study that shows the eriocitrin and E05 are potent anthelmintic molecules according to in silico docking tests. E05 is worth to be investigated comprehensively with fur-ther in vitro studies.

References

  • REFERENCES
  • [1] Ke Y, Ye K, Grossniklaus HE, Archer DR, Joshi HC, Kapp JA. Noscapine inhibits tumor growth with little toxicity to normal tissues or inhibition of immune responses. Cancer Immun Immunother 2000;49:217225. [CrossRef]
  • [2] Jackson T, Chougule MB, Ichite N, Patlolla RR, Singh M. Antitumor activity of noscapine in human non-small cell lung cancer xenograft model. Cancer Chemother Pharmacol 2008;63:117–126. [CrossRef]
  • [3] Sood D, Kumar, N, Singh, A, Tomar V, Dass SK, Chandra R. Deciphering the binding mechanism of noscapine with lysozyme: biophysical and chemoinformatic approaches. ACS Omega 2019;4:16233−16241. [CrossRef]
  • [4] Karna1 P, Rida PCG, Pannu V, Gupta KK, Dalton WB, Joshi H, et al. Novel microtubule-modulating noscapinoid triggers apoptosis by inducing spindle multipolarity via centrosome amplification and declustering. Cell Death Differ 2011;18:632–644. [CrossRef]
  • [5] Jayaraj RL, Beiram R, Azimullah S, Nagoor Meeran MF, Shreesh K, Ojha AA, et al. Noscapine prevents rotenone-ınduced neurotoxicity: ınvolvement of oxidative stress, neuroinflammation and autophagy pathways. Molecules 2021;26:4627. [CrossRef]
  • [6] Ebrahimi SA. Noscapine, a possible drug candidate for attenuation of cytokine release associated with SARS-CoV-2. Drug Dev Res 2020;26:765–767. [CrossRef]
  • [7] Mooraki A, Jenabi A, Jabbari M, Zolfaghari MI, Javanmardi SZ, Mahmoudian M, et al. Noscapine suppresses angiotensin converting enzyme inhibitors-induced cough. Nephrology 2005;10:348–350. [CrossRef]
  • [8] Mahmoudian M, Rezvani M, Rohani M, Benaissa F, Jalili M, Ghourchian S. A novel effect of noscapine on patients with massive ischemic stroke: A pseudo-randomized clinical trial. Iran J Neurol 2015;14::12–16.
  • [9] Vahabzadeh G, Rahbar-Roshandel N, Ebrahimi SA, Mahmoudian M. Neuroprotective effect of noscapine on cerebral oxygenglucose deprivation injury. Pharmacol Rep 2015;67:281–288. [CrossRef]
  • [10] Yan AI, Kseniya YF, Rustam TM, Andrey KB, Alexey KB, Anastasiya AV, et al. Antibacterial activity of noscapine analogs. Bioorganic Med Chem Lett 2021;43:128055. [CrossRef]
  • [11] Dahlstrom B, Mellstrand T, Lofdahl CG, Johansson M. Pharmacokinetic properties of noscapine. Eur J Clin Pharmacol 1982;22:535539. [CrossRef]
  • [12] Karlsson MO, Dahlstrom D, Eckernas SA, Johansson M, Tufvesson AT. Pharmacokinetics of oral noscapine. Eur J Clin Pharmacol 1990;39:275–279. [CrossRef]
  • [13] Bitoun E, Micheloni A, Lamant L, Bonnart C, Tartaglia-Polcini A, Cobbold C, et al. LEKTI proteolytic processing in human primary keratinocytes, tissue distribution and defective expression in Netherton syndrome. Hum Mol Genet 2003;12:2417–2430. [CrossRef]
  • [14] Sebak S, Mirzaei M, Malhotra M, Kulamarva A, Prakash S. Human serum albumin nanoparticles as an efficient Noscapine drug delivery system for potential use in breast cancer: preparation and in vitro analysis. Int J Nanomed 2010;5:525. [CrossRef]
  • [15] Abdalla MO, Aneja R, Dean D, Rangari, V, Russell A, Jaynes J, et al. Synthesis and characterization of Noscapine loaded magnetic polymeric nanoparticles. J Magn Magn Mater 2010;322:190−196. [CrossRef]
  • [16] Kar F, Hacioglu C, Goncu Y, Sogut I, Senturk H, Donmez DB, et al. In vivo assessment of the effect of hexagonal boron nitride nanoparticles on biochemical, histopathological, oxidant and antioxidant status. J Cluster Sci 2021;32:517529. [CrossRef]
  • [17] Kar F, Söğüt İ, Hacıoğlu C, Göncü Y, Şentürk H, Şenat A, Eren, Ö., et al. Hexagonal boron nitride nanoparticles trigger oxidative stress by modulating thiol/disulfide homeostasis, Hum Exp Toxicol 2021;40:1572–1583. [CrossRef]
  • [18] Kun Z, Yong Z, Cong X, Wanlu Z, Hongfeng W, Jiaoqing T, et al. Application of hydroxyapatite nanoparticles in tumor-associated bone segmental defect. Appl Sci Eng 2019;5:116. [CrossRef]
  • [19] Fu Q, Rahaman MN, Zhou N, Huang W, Wang D, Zhang L, et al. In vitro study on different cell response to spherical hydroxyapatite nanoparticles. J Biomater Appl 2008;23:37–50. [CrossRef]
  • [20] Yuan Y, Liu C, Qian J, Wang J, Zhang Y. Size-mediated cytotoxicity and apoptosis of hydroxyapatite nanoparticles in human hepatoma HepG2 cells. Biomaterials 2010;31:730–740. [CrossRef]
  • [21] Xu J, Xu P, Li Z, Huang J, Yang Z. Oxidative stress and apoptosis induced by hydroxyapatite nanoparticles in C6 cells. J Biomed Mater Res Part A 2012;100:738–745. [CrossRef]
  • [22] Han Y, Li S, Cao X, Yuan L, Wang Y, Yin Y, et al. Different inhibitory effect and mechanism of hydroxyapatite nanoparticles on normal cells and cancer cells in vitro and in vivo. Sci Rep 2015;4:7134. [CrossRef]
  • [23] Lu L, Li M, Li L, Wei S, Hu X, Wang X, et al. High-activity chitosan/nano hydroxyapatite/zoledronic acid scaffolds for simultaneous tumor inhibition, bone repair and infection eradication. Mater Sci Eng C 2008;82:225–233. [CrossRef]
  • [24] Palazzo B, Sidoti MC, Roveri N, Tampieri A, Sandri M, Bertolazzi L, et al. Controlled drug delivery from porous hydroxyapatite grafts: An experimental and theoretical approach. Mater Sci Eng 2005;25:207213. [CrossRef]
  • [25] Gamez-Meza N, Noriega-Oriega-Rodriguez JA, Medina-Juarez LA, OrtegaGarcia J, Cazarez-Casanova, R, Angulo-Guerrero O. Antioxidant activity in soybean oil of extracts from thompson grape bagasse. J Am Oil Chem 1999;76:1445. [CrossRef]
  • [26] Chang C, Yang M, Wen H, Chern J. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 2002;10:178182. [CrossRef]
  • [27] Bulduk I, Taktak F. Isolation and characterization of antitumor alkaloid from poppy capsules (papaver somniferum). J Chem 2013;2013:14. [CrossRef]
  • [28] Kuriakose TA, Kalkura SN, Palanichamy M, Arivuoli D, Dierks K, Bocelli G, et al. Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol-gel technique at low temperature. J Cryst Growth 2004;263:517523. [CrossRef]
  • [29] Ergün Y, Başpınar SM. Effect of acid passivation and H2 sputtering pretreatments on the adhesive strength of sol-gel derived Hydroxyapatite coating on titanium surface. Int J Hydrogen Energy 2017;42:2042020429. [CrossRef]
  • [30] Gün M. Investigation of the use of alginate-chitosan nanoparticles in colchicine release (master thesis). Aydın: Department of Chemistry. Adnan Menderes University, Institute of Science and Technology; 2013.
  • [31] Singh H. Singh P, Kumari K, Chandra A, Dass SK,Chandra R. A review on noscapine, and its ımpact on heme Metabolism. Curr Drug Metab 2013;14:351360. [CrossRef]
  • [33] Avuloğlu Y, Yüzbaşıoğlu D. Evaluation of genotoxic effects of 3-methyl-5-(4- carboxycyclohexylmethyl)-tetrahydro-2H-1,3,5-thiadiazine-2-thione on human peripheral lymphocytes. Pharm Biol 2017;55:1228–1233. [CrossRef]
  • [34] Ciğerci IH, Liman R, Özgül E, Konuk M. Genotoxicity of indium tin oxide by Allium and Comet tests. Cytotechnology 2015;67:157–163. [CrossRef]
  • [35] Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 2004;37:277–285. [CrossRef]
  • [36] Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem 2005;38:1103–1111. [CrossRef] [37] Zhaparova L. Synthesis of nanoparticles and nanocapsules for controlled release of the antitumor drug "Arglabin" and antituberculosis drugs (doctorial thesis). Eindhoven: Technische Universiteit Eindhoven; 2012.
  • [38] Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev 2008;108:4754–4783. [CrossRef]
  • [39] Meyers MA, Chen PY, Lin AYM, Seki Y. Biological materials: structure and mechanical properties. Prog Mater Sci 2008;53:1–20. [CrossRef]
  • [40] Hui J, Wang X. Hydroxyapatite nanocrystals: colloidal chemistry, assembly, and their biological applications, Inorg Chem Front 2014;1:215–225. [CrossRef]
  • [41] Liu TY, Chen SY, Liu DM, Liou SC. On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery. J Control Release 2005;107:112–121. [CrossRef]
  • [42] Uskovic V, Uskovic DP. Nanosized hydroxyapatite, and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res 2011;96B:152–191. [CrossRef]
  • [43] Lafisco M, Delgado-Lopez JM, Varoni EM, Tampieri A, Rimondini L, Gomez-Morales J, et al. Cell surface receptor targeted biomimetic apatite nanocrystals for cancer therapy. Small 2013;25:3834–3844. [CrossRef]
  • [44] Dumontet C, Jordan MA. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 2010;9:790–803. [CrossRef]
  • [45] Kumar N, Sood D, Spek PJ, Sharma HS, Chandra R. Molecular binding mechanism and pharmacology comparative analysis of noscapine for repurposing against SARS-CoV‑2 protease. J Proteome Res 2020;19:4678−4689. [CrossRef]
  • [46] Feng W, Li MS, Lu YP, Qi YX, Liu YX. Synthesis and microstructure of hydroxyapatite nanofibers synthesized at 37oC, Mater Chem Phys 2006;95:145149, [CrossRef]
  • [47] Cengiz B. Hidroksiapatit nanoparçacıklarının sentezi (yüksek lisans tezi). Ankara: Ankara Üniversitesi Kimya Mühendisliği Anabilim Dalı, Fen Bilimleri Enstitüsü; 2007.
  • [48] Kong L, Mu Z, Yu Y, Zhang L, Hu J. Polyethyleneimine stabilized HAPs modified with hyaluronic acid for targeted drug delivery. RSC Adv 2017;6:101790–101799. [CrossRef]
  • [49] Langit KS, Auerkaria EI. Genotoxicity and repair capability of DNA following the oral exposure to analgesic drugs: A review. AIP Conference Proceed 2021;2344:040007. [CrossRef]
  • [50] Schuler M, Muehlbauer P, Guzzie P, Eastmond DA. Noscapinehydrochloride disrupts the mitotic spindle in mammalian cells and induces aneuploidy as well as polyploidy in cultured human lymphocytes. Mutagenesis 1999;14:5156. [CrossRef]
  • [51] Gatehouse DG, Stemp G, Pascoe S, Wilcox P, Hawker J, Tweats DJ. Investigations into the induction of aneuploidy and polyploidy in mammalian cells by the anti-tussive agent noscapine hydrochloride, Mutagenesis 1991;6:279283. [CrossRef]
  • [52] Sneyd JR. Papaveretum in women of childbearing potential. BMJ 1991;303:852. [CrossRef]
  • [53] Tiveron MC, Hirsch MR, Brunet JF. The expression pattern of the transcription factor Phox2 delineates synaptic pathways of autonomous nervous. J Neurosci 1996;16:76497660. [CrossRef]
  • [54] Nemati F, Bischoff-Kont I, Salehi P, Nejad-Ebrahimi S, Mohebbia M, Bararjanian M, et al. Identification of novel anti-cancer agents by the synthesis and cellular screening of a noscapine- based library. Bioorganic Chem 2021;115:105135. [CrossRef]
  • [55] Yang YH, Liu CH, Liang YH, Lin FH, Wu KCW. Hollow mesoporous hydroxyapatite nanoparticles (hmHANPs) with enhanced drug loading and pH-responsive release properties for intracellular drug delivery. J Mater Chem B 2013;1:24472450. [CrossRef]
  • [56] Chen M, Feng W, Lin S, He C, Gao Y Wang, H. Antitumor efficacy of a PLGA composite nanofiber embedded with doxorubicin@MSNs and hydroxycamptothecin@ HANPs, RSC Adv 2014;4:5334453351. [CrossRef]
  • [57] Li D, He J, Huang X, Li J, Tian H, Chen X, et al. Intracellular pH-responsive mesoporous hydroxyapatite nanoparticles for targeted release of anticancer drug. RSC Adv 2015;5:3092030928. [CrossRef]
  • [58] Xu S, Shi J, Feng D, Yang L, Cao S. Hollow hierarchical hydroxyapatite/Au/ polyelectrolyte hybrid microparticles for multi-responsive drug delivery. J Mater Chem B 2014;2:65006507. [CrossRef]
  • [59] Verma G, Barick KC, Shetake NG, Pandey BN, Hassan PA. Citrate-functionalized hydroxyapatite nanoparticles for pH-responsive drug delivery. RSC Adv 2016;6,7796877976. [CrossRef]
  • [60] Verma G, Shetake NG, Barick KC, Pandey BN, Hassan PA, Priyadarsini KI. Covalent immobilization of doxorubicin in glycine functionalized hydroxyapatite nanoparticles for pH-responsive release. New J Chem 2018;42:62836292. [CrossRef]
  • [61] Xiong H, Du S, Ni J, Zhou J, Yao J. Mitochondria and nuclei dual-targeted heterogeneous hydroxyapatite nanoparticles for enhancing the therapeutic efficacy of doxorubicin. Biomaterials 2016;94:7083. [CrossRef]
  • [62] Lee MS, Lee JE, Byun E, Kim NW, Lee K, Lee H, et al. Target-specific delivery of siRNA by stabilized calcium phosphate nanoparticles using dopa-hyaluronic acid conjugate. J Control Release 2014;192:122130. [CrossRef]
  • [63] Kong L, Mu Z, Yu Y, Zhang L, Hu J. Polyethyleneimine-stabilized hydroxyapatite nanoparticles modified with hyaluronic acid for targeted drug delivery. RSC Adv 2016;6:101790101799. [CrossRef]
  • [64] Qiu C, Wei W, Sun J, Zhang HT, Ding JS, Wang JC, et al. Systemic delivery of siRNA by hyaluronan-functionalized calcium phosphate nanoparticles for tumor-targeted therapy. Nanoscale 2016;26:1303313044. [CrossRef]
There are 63 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research Articles
Authors

Dilara Karaman 0000-0003-4386-8531

Ahmet Onur Girişgin 0000-0002-0020-2708

Oya Girişgin 0000-0001-9896-1093

Publication Date June 12, 2024
Submission Date October 3, 2022
Published in Issue Year 2024 Volume: 42 Issue: 3

Cite

Vancouver Karaman D, Girişgin AO, Girişgin O. Eriocitrin derivatives and their anthelmintic potentials. SIGMA. 2024;42(3):875-84.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/