Research Article
BibTex RIS Cite
Year 2024, Volume: 42 Issue: 3, 787 - 794, 12.06.2024

Abstract

References

  • REFERENCES
  • [1] Mohamed AMO, Paleologos EK. Emerging Pollutants: Fate, Pathways, and Bioavailability. In: Fundamentals of geoenvironmental engineering: Understanding soil, water, and pollutant interaction and transport. Amsterdam: Elsevier; 2018. pp. 327–358. [CrossRef]
  • [2] Derksen JGM, Rijs GBJ, Jongbloed RH. Diffuse pollution of surface water by pharmaceutical products. Water Sci Technol 2004;49:213–221. [CrossRef]
  • [3] Geissen V, Mol H, Klumpp E, Umlauf G, Nadal M, van der Ploeg M, et al. Emerging pollutants in the environment: A challenge for water resource management. Int Soil Water Conserv Res 2015;3:57–65.
  • [4] Maycock DS, Watts CD. Pharmaceuticals in Drinking Water. In: Nriangu JO, editör. Encyclopedia of environmental health. Amsterdam: Elsevier; 2011. pp. 472–484. [CrossRef]
  • [5] Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, et al. Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 2004;427:630–633. [CrossRef]
  • [6] Guzel EY, Cevik F, Daglioglu N. Determination of pharmaceutical active compounds in Ceyhan River, Turkey: Seasonal, spatial variations and environmental risk assessment. Hum Ecol Risk Assess 2019;25:1980–1995. [CrossRef]
  • [7] Álvarez S, Ribeiro RS, Gomes HT, Sotelo JL, García J. Synthesis of carbon xerogels and their application in adsorption studies of caffeine and diclofenac as emerging contaminants. Chem Eng Res Des, 2015;95:229–238. [CrossRef]
  • [8] Lee KC, Choo KH. Hybridization of TiO2 photocatalysis with coagulation and flocculation for 1,4-dioxane removal in drinking water treatment. Chem Eng J 2013;231:227–235. [CrossRef]
  • [9] Ranade VV, Bhandari VM. Industrial Wastewater Treatment, Recycling and Reuse. Oxford: Butterworth-Heinemann; 2014. pp. 81–140. [CrossRef]
  • [10] Jodeh S, Sawalha M, Abu-Obaid A, Salghi R, Hammoutti B, Radi S, et al. Adsorption of lead and zinc from used lubricant oil using agricultural soil: Equilibrium, kinetic and thermodynamic studies. J Mater Environ Sci 2015;6:580–591.
  • [11] Sotelo JL, Ovejero G, Rodríguez A, Álvarez S, Galán J, García J. Competitive adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon. Chem Eng J 2014;240:443– 453. [CrossRef]
  • [12] Landry KA, Boyer TH. Diclofenac removal in urine using strong-base anion exchange polymer resins. Water Res 2013;47:6432–6444. [CrossRef]
  • [13] Sarasidis VC, Plakas KV, Patsios SI, Karabelas AJ. Investigation of diclofenac degradation in a continuous photo-catalytic membrane reactor: influence of operating parameters. Chem Eng J 2014;239:299–311. [CrossRef]
  • [14] Üstün-Odabaşı S, Maryam B, Özdemir N, Büyükgüngör H. Occurrence and seasonal variations of pharmaceuticals and personal care products in drinking water and wastewater treatment plants in Samsun, Turkey. Environ Earth Sci 2020;79:311. [CrossRef]
  • [15] Anandan S, Ikuma Y, Niwa K. An overview of semi-conductor photocatalysis: Modification of TiO2 nanomaterials. Solid State Phenom 2010;162:239–260. [CrossRef]
  • [16] Barakat AM, Kumar R. Photocatalytic Activity Enhancement of Titanium Dioxide Nanoparticles: Degradation of Pollutants in Wastewater. New York: Springer; 2016. pp. 1–29. [CrossRef]
  • [17] Dogu D, Karakas G. Methylene blue degradation on praseodymium-doped titanium dioxide photocatalyst. J Fac Eng Archit Gazi Univ 2020;35:859–869.
  • [18] Calza P, Sakkas VA, Medana C, Baiocchi C, Dimou A, Pelizzetti E, et al. Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl Catal B Environ 2006;67:197–205. [CrossRef]
  • [19] Rizzo L, Meric S, Kassinos D, Guida M, Russo F, Belgiorno V. Degradation of diclofenac by TiO(2) photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Res 2009;43:979–988. [CrossRef]
  • [20] Achilleos A, Hapeshi E, Xekoukoulotakis NP, Mantzavinos D, Fatta-Kassinos D. Factors affecting diclofenac decomposition in water by UV-A/TiO2 photocatalysis. Chem Eng J 2010;161:53– 59. [CrossRef]
  • [21] Aguinaco A, Beltrán FJ, García-Araya JF, Oropesa A. Photocatalytic ozonation to remove the pharmaceutical diclofenac from water: Influence of variables. Chem Eng J 2012;189–190:275– 282. [CrossRef]
  • [22] Tbessi I, Benito M, Llorca J, Molins E, Sayadi S, Najjar W. Silver and manganese co-doped titanium oxide aerogel for effective diclofenac degradation under UV-A light irradiation. J Alloys Compd 2019;779:314–325. [CrossRef]
  • [23] Martinez T, Bertron A, Ringot E, Escadeillas G. Degradation of NO using photocatalytic coatings applied to different substrates. Build Environ 2011;46:1808–1816. [CrossRef]
  • [24] Monteagudo JM, Durán A, Chatzisymeon E, San Martín I, Naranjo S. Solar activation of TiO2 intensified with graphene for degradation of Bisphenol-A in water. Solar Energy 2018;174:1035–1043. [CrossRef]
  • [25] Jiang YY, Chen ZW, Li MM, Xiang QH, Wang XX, Miao HF, et al. Degradation of diclofenac sodium using Fenton-like technology based on nano-calcium peroxide. Sci Total Environ 2021;773:144801. [CrossRef]
  • [26] Dayana E, Isa M, Shameli K, Jia H, Wahyuny N, Jusoh C. Photocatalytic degradation of selected pharmaceuticals using green fabricated zinc oxide nanoparticles. Adv Powder Technol
  • 2021;32:2398–2409. [CrossRef]
  • [27] Gupta VK, Jain R, Agarwal S, Shrivastava M. Kinetics of photo-catalytic degradation of hazardous dye tropaeoline using UV/TiO2 in a UV reactor. Colloids Surf A: Physicochem Eng Asp 2011;378:22–26. [CrossRef]
  • [28] Lam SM, Sin JC, Mohamed AR. Parameter effect on photocatalytic degradation of phenol using TiO2-P25/activated carbon (AC). Korean J Chem Eng 2010;27:1109–1116. [CrossRef]
  • [29] Varma KS, Tayade RJ, Shah KJ, Joshi PA, Shukla AD, Gandhi VG. Photocatalytic degradation of pharmaceutical and pesticide compounds (PPCs) using doped TiO2 nanomaterials: A review. Water Energy Nexus, 2020;3:46–61. [CrossRef]
  • [30] Lin L, Wang H, Jiang W, Mkaouar AR, Xu P. Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers. J Hazard Mater 2017;333:162–168. [CrossRef]
  • [31] Bielski BHJ, Cabelli DE. Superoxide and Hydroxyl Radical Chemistry in Aqueous Solution. In: Foote CS, Valentine JS, Greenburg A, Liesman JF, editors. Active oxygen in chemistry. Dordrecht: Springer; 1995. pp. 66–104. [CrossRef]
  • [32] Thiagarajan V, Alex SA, Seenivasan R, Chandrasekaran N, Mukherjee A. Toxicity evaluation of nano-TiO2 in the presence of functionalized microplastics at two trophic levels: Algae and crustaceans. Sci Total Environ 2021;784:147262. [CrossRef]

Photocatalytic degradation of diclofenac (an emerging contaminant): Effects of photocatalyst amount and air flow rate

Year 2024, Volume: 42 Issue: 3, 787 - 794, 12.06.2024

Abstract

Photocatalytic degradation of diclofenac, an anti-inflammatory drug, was investigated with
TiO2 photocatalyst under UV light (365nm). The effects of photocatalyst concentrations (0.5
g/L, 1 g/L and 2 g/L) and air flow rates (3L/h, 6 L/h, 12 L/h and 18 L/h) on photodegradation kinetic were evaluated for 15 mg/L diclofenac solution during 4 hours. The results showed that
the amount of TiO2 and air flow rates have direct influence on the photocatalytic degradation of diclofenac. Excessive catalyst amount and high air flow rates inhibited the degradation of diclofenac. The highest diclofenac degradation efficiency of 78.4 % were achieved by 6 L/h air flow rate with a photocatalyst concentration of 0.5 g/L. The photocatalytic degradation of diclofenac followed the Langmuir-Hinshelwood kinetic model except the experiments carried without air flow and very low air flow rates.

References

  • REFERENCES
  • [1] Mohamed AMO, Paleologos EK. Emerging Pollutants: Fate, Pathways, and Bioavailability. In: Fundamentals of geoenvironmental engineering: Understanding soil, water, and pollutant interaction and transport. Amsterdam: Elsevier; 2018. pp. 327–358. [CrossRef]
  • [2] Derksen JGM, Rijs GBJ, Jongbloed RH. Diffuse pollution of surface water by pharmaceutical products. Water Sci Technol 2004;49:213–221. [CrossRef]
  • [3] Geissen V, Mol H, Klumpp E, Umlauf G, Nadal M, van der Ploeg M, et al. Emerging pollutants in the environment: A challenge for water resource management. Int Soil Water Conserv Res 2015;3:57–65.
  • [4] Maycock DS, Watts CD. Pharmaceuticals in Drinking Water. In: Nriangu JO, editör. Encyclopedia of environmental health. Amsterdam: Elsevier; 2011. pp. 472–484. [CrossRef]
  • [5] Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, et al. Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 2004;427:630–633. [CrossRef]
  • [6] Guzel EY, Cevik F, Daglioglu N. Determination of pharmaceutical active compounds in Ceyhan River, Turkey: Seasonal, spatial variations and environmental risk assessment. Hum Ecol Risk Assess 2019;25:1980–1995. [CrossRef]
  • [7] Álvarez S, Ribeiro RS, Gomes HT, Sotelo JL, García J. Synthesis of carbon xerogels and their application in adsorption studies of caffeine and diclofenac as emerging contaminants. Chem Eng Res Des, 2015;95:229–238. [CrossRef]
  • [8] Lee KC, Choo KH. Hybridization of TiO2 photocatalysis with coagulation and flocculation for 1,4-dioxane removal in drinking water treatment. Chem Eng J 2013;231:227–235. [CrossRef]
  • [9] Ranade VV, Bhandari VM. Industrial Wastewater Treatment, Recycling and Reuse. Oxford: Butterworth-Heinemann; 2014. pp. 81–140. [CrossRef]
  • [10] Jodeh S, Sawalha M, Abu-Obaid A, Salghi R, Hammoutti B, Radi S, et al. Adsorption of lead and zinc from used lubricant oil using agricultural soil: Equilibrium, kinetic and thermodynamic studies. J Mater Environ Sci 2015;6:580–591.
  • [11] Sotelo JL, Ovejero G, Rodríguez A, Álvarez S, Galán J, García J. Competitive adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon. Chem Eng J 2014;240:443– 453. [CrossRef]
  • [12] Landry KA, Boyer TH. Diclofenac removal in urine using strong-base anion exchange polymer resins. Water Res 2013;47:6432–6444. [CrossRef]
  • [13] Sarasidis VC, Plakas KV, Patsios SI, Karabelas AJ. Investigation of diclofenac degradation in a continuous photo-catalytic membrane reactor: influence of operating parameters. Chem Eng J 2014;239:299–311. [CrossRef]
  • [14] Üstün-Odabaşı S, Maryam B, Özdemir N, Büyükgüngör H. Occurrence and seasonal variations of pharmaceuticals and personal care products in drinking water and wastewater treatment plants in Samsun, Turkey. Environ Earth Sci 2020;79:311. [CrossRef]
  • [15] Anandan S, Ikuma Y, Niwa K. An overview of semi-conductor photocatalysis: Modification of TiO2 nanomaterials. Solid State Phenom 2010;162:239–260. [CrossRef]
  • [16] Barakat AM, Kumar R. Photocatalytic Activity Enhancement of Titanium Dioxide Nanoparticles: Degradation of Pollutants in Wastewater. New York: Springer; 2016. pp. 1–29. [CrossRef]
  • [17] Dogu D, Karakas G. Methylene blue degradation on praseodymium-doped titanium dioxide photocatalyst. J Fac Eng Archit Gazi Univ 2020;35:859–869.
  • [18] Calza P, Sakkas VA, Medana C, Baiocchi C, Dimou A, Pelizzetti E, et al. Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl Catal B Environ 2006;67:197–205. [CrossRef]
  • [19] Rizzo L, Meric S, Kassinos D, Guida M, Russo F, Belgiorno V. Degradation of diclofenac by TiO(2) photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Res 2009;43:979–988. [CrossRef]
  • [20] Achilleos A, Hapeshi E, Xekoukoulotakis NP, Mantzavinos D, Fatta-Kassinos D. Factors affecting diclofenac decomposition in water by UV-A/TiO2 photocatalysis. Chem Eng J 2010;161:53– 59. [CrossRef]
  • [21] Aguinaco A, Beltrán FJ, García-Araya JF, Oropesa A. Photocatalytic ozonation to remove the pharmaceutical diclofenac from water: Influence of variables. Chem Eng J 2012;189–190:275– 282. [CrossRef]
  • [22] Tbessi I, Benito M, Llorca J, Molins E, Sayadi S, Najjar W. Silver and manganese co-doped titanium oxide aerogel for effective diclofenac degradation under UV-A light irradiation. J Alloys Compd 2019;779:314–325. [CrossRef]
  • [23] Martinez T, Bertron A, Ringot E, Escadeillas G. Degradation of NO using photocatalytic coatings applied to different substrates. Build Environ 2011;46:1808–1816. [CrossRef]
  • [24] Monteagudo JM, Durán A, Chatzisymeon E, San Martín I, Naranjo S. Solar activation of TiO2 intensified with graphene for degradation of Bisphenol-A in water. Solar Energy 2018;174:1035–1043. [CrossRef]
  • [25] Jiang YY, Chen ZW, Li MM, Xiang QH, Wang XX, Miao HF, et al. Degradation of diclofenac sodium using Fenton-like technology based on nano-calcium peroxide. Sci Total Environ 2021;773:144801. [CrossRef]
  • [26] Dayana E, Isa M, Shameli K, Jia H, Wahyuny N, Jusoh C. Photocatalytic degradation of selected pharmaceuticals using green fabricated zinc oxide nanoparticles. Adv Powder Technol
  • 2021;32:2398–2409. [CrossRef]
  • [27] Gupta VK, Jain R, Agarwal S, Shrivastava M. Kinetics of photo-catalytic degradation of hazardous dye tropaeoline using UV/TiO2 in a UV reactor. Colloids Surf A: Physicochem Eng Asp 2011;378:22–26. [CrossRef]
  • [28] Lam SM, Sin JC, Mohamed AR. Parameter effect on photocatalytic degradation of phenol using TiO2-P25/activated carbon (AC). Korean J Chem Eng 2010;27:1109–1116. [CrossRef]
  • [29] Varma KS, Tayade RJ, Shah KJ, Joshi PA, Shukla AD, Gandhi VG. Photocatalytic degradation of pharmaceutical and pesticide compounds (PPCs) using doped TiO2 nanomaterials: A review. Water Energy Nexus, 2020;3:46–61. [CrossRef]
  • [30] Lin L, Wang H, Jiang W, Mkaouar AR, Xu P. Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers. J Hazard Mater 2017;333:162–168. [CrossRef]
  • [31] Bielski BHJ, Cabelli DE. Superoxide and Hydroxyl Radical Chemistry in Aqueous Solution. In: Foote CS, Valentine JS, Greenburg A, Liesman JF, editors. Active oxygen in chemistry. Dordrecht: Springer; 1995. pp. 66–104. [CrossRef]
  • [32] Thiagarajan V, Alex SA, Seenivasan R, Chandrasekaran N, Mukherjee A. Toxicity evaluation of nano-TiO2 in the presence of functionalized microplastics at two trophic levels: Algae and crustaceans. Sci Total Environ 2021;784:147262. [CrossRef]
There are 34 citations in total.

Details

Primary Language English
Subjects Computer Software
Journal Section Research Articles
Authors

Dilek Duranoğlu 0000-0002-7025-3359

Mustafa Anıl Öz This is me 0000-0001-8287-1472

Aslı Bilaloğlu This is me 0000-0001-8415-2869

Publication Date June 12, 2024
Submission Date August 19, 2022
Published in Issue Year 2024 Volume: 42 Issue: 3

Cite

Vancouver Duranoğlu D, Öz MA, Bilaloğlu A. Photocatalytic degradation of diclofenac (an emerging contaminant): Effects of photocatalyst amount and air flow rate. SIGMA. 2024;42(3):787-94.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/