Review
BibTex RIS Cite

Yaygın Kullanımlı Antibiyotiklerin Konvansiyonel Arıtma Tesislerinde Giderimi

Year 2017, Volume: 2 Issue: 2, 1 - 22, 29.12.2017

Abstract

 Patojenlere zarar veren her türlü kimyasal maddeye antibiyotik denilmektedir. Antibiyotikler kimyasal ve yapısal özelliklerine göre betalaktamlar, florokinolonlar, makrolidler, tetrasiklinler,  sülfonomidler, trimetoprimler, ve diğer antibiyotikler olarak sınıflandırılmaktadir. Antibiyotiklerin vücuttan metabolize edilmeden atılma oranları %10- %90 arasında değişmektedir. Bu nedenle dışkı veya idrar yoluyla atılan antibiyotikler, kanalizasyona karışmaktadır  ve kentsel atık su arıtma tesislerine ulaşmaktadır. Özellikle mikrokirletici gideriminin gündemde olduğu günümüz şartlarında, evsel atık suların arıtımında uygulanan konvansiyonel yöntemlerde, antibiyotik giderim performansının bilinmesi ve tesis planlarının giderim verimleri göz önünde bulundurularak yapılması önem arz etmektedir. Bu çalışmada antibiyotikler kimyasal ve yapısal olarak sınıflandırılmış ve ülkemizde de yaygın kullanım alanına sahip bu antibiyotiklerin evsel atık su artıma tesislerinde giderimlerini belirlemek üzere literatür çalışmalarından bir derleme yapılmıştır. Konvansiyonel arıtmada antibiyotikler farklı oranlarda giderilebiliyor olmakla birlikte çıkış değerleri nanogram /mikrogram seviyelerindedir. Çevresel kaynakların korunması açısından antibiyotik gideriminde uygun ileri arıtma yöntemlerinin araştırılması gerekmektedir. 

References

  • [1] Adams, C., Asce, M., Wang, Y., Loftin, K., Meyer, M., 2002. Removal of antibiotics from surface and distilled water in conventional water treatment processes, J. Environ. Eng. 128: 253-260.
  • [2] Aksu, Z., Tunc, O., 2005. Application of biosorption for penicillin G removal: comparison with activated carbon, Process Biochemistry. 40 (2): 831-847.
  • [3] Arikan, O.A., 2008. Degradation and metabolization of chlortetracycline during the anaerobic digestion of manure from medicated calves, J. Hazard. Mater. 158: 485-490.
  • [4] Batt, At, Snow, D.D., Aga, D.S., 2006. Occurrence of sulphonamide antimicrobials in private water wells in Washington County, Idaho, USA, Chemosphere. 64: 1963-1971.
  • [5] Batt, A.L., Kim, S., Aga, D.S., 2007. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations, Chemosphere. 68 (3): 428-435.
  • [6] Belden, J.B., Maul, J.D., Lydy, M.J., 2007. Partitioning and photodegradation of ciprofloxacin in aqueous systems in the presence of organic matter, Chemosphere. 66 (8): 1390-1395.
  • [7] Boussu, K., Kindts, C., Vandecasteele, C., Van der Bruggen, B., 2007. Surfactant fouling of nanofiltration membranes: measurements and mechanisms, Chemphyschem 8 (12): 1836-1845.
  • [8] Brown, K.D., Kulis, J., Thomson, B., Chapman, T.H., Mawhinney, D.B., 2006. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico, Science of the Total Environment. 366 (2-3): 772-783.
  • [9] Cahill, J.D., Furlong, E.T., Burkhardt, M.R., Kolpin, D., Anderson, L.G., 2004. Determination of pharmaceutical compounds in surface-and ground-water samples by solidphase extraction and high-performance liquid chromatography-electrospray ionization mass spectrometry, Journal of Chromatography A. 1041 (1-2): 171-180.
  • [10] Carballa, M., Omil, F., Alder, A.C., Lema, J.M., 2006. Comparison between the conventional anaerobic digestion of sewage sludge and its combination with a chemical or thermal pre-treatment concerning the removal of pharmaceuticals and personal care products, Water Science and Technology. 53 (8): 109-117.
  • [11] Carberry, J., Englande, A., 1983. Sludge Characteristics and Behavior. Martinus Nijhoff Publishers, Boston, The Hague, Dordrecht, Lancaster.
  • [12] Cardoza, L.A., Knapp, C.W., Larive, C.K., Belden, J.B., Lydy, M.J., Graham, D.W., 2005. choPollution. 161 (1-4): 383-398.
  • [13] Cha, J.M., Yang, S., Carlson, K.H., 2005. Rapid analysis of trace levels of antibiotic polyether ionophores in surface water by solid-phase extraction and liquid chromatography with ion trap tandem mass spectrometric detection, Journal of Chromatography A. 1065 (2): 187-198.
  • [14] Cha, J.M., Yang, S., Carlson, K.H., 2006. Trace determination of beta-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry, Journal of Chromatography A. 1115 (1-2): 46-57.
  • [15] Chelliapan, S., Wilby, T., Sallis, P.J., 2006. Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics, Water Res. 40: 507-516.
  • [16] Choi, K.J., Kim, S.G., Kim, C.W., Kim, S.H., 2007a. Determination of antibiotic compounds in water by on-line SPE-LC/MSD, Chemosphere. 66 (6), 977-984.
  • [17] Choi, K.-J., Son, H.-J., Kim, S.-H., 2007b. Ionic treatment for removal of sulphonamide and tetracycline classes of antibiotic, Sci. Total Environ. 387: 247-256.
  • [18] Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N., Kroiss, H., 2005. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants, Water Research. 39 (19): 4797-4807.
  • [19] Costanzo, S.D., Murby, J., Bates, J., 2005. Ecosystem response to antibiotics entering the aquatic environment, Marine Pollution Bulletin. 51 (1-4): 218-223.
  • [20] Deshpande, A.D., Baheti, K.G., Chatterjee, N.R., 2004. Degradation of beta-lactam antibiotics, Current Science. 87 (12): 1684-1695.
  • [21] Donoho, A.L., 1984. Biochemical studies of the fate of monensin in animals and in the environment, Journal of Animal Science. 58 (6): 153-1539.
  • [22] Drewes, J.E., 2007. Analysis, fate and removal of pharmaceuticals in the water cycle. In: Petrovic, M., Barcelo, D. (Eds.), Wilson & Wilsons. Elsevier, Amsterdam, pp. 427-446.
  • [23] Glassmeyer, S.T., Shoemaker, J.A., 2005. Effects of chlorination on the persistence of pharmaceuticals in the environment, Bulletin of Environmental Contamination and Toxicology. 74 (1): 24-31.
  • [24] Gobel, A., McArdell, C.S., Suter, M.J.F., Giger, W., 2004. Trace determination of macrolide and sulfonamide antimicrobials, a human sulfonamide metabolite, and trimethoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry, Analytical Chemistry. 76 (16): 4756-4764.
  • [25] Gobel, A., Athomsen, A., McArdell, C.S., Joss, A., Giger, W., 2005a. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment, Environmental Science Technology. 39 (11): 3981-3989.
  • [26] Gobel, A., Thomsen, A., McArdell, C.S., Alder, A.C., Giger, W., Thei, N., Loffler, D., Ternes, T.A., 2005b. Extraction and determination of sulfonamides, macrolides, and trimethoprim in sewage sludge, Journal of Chromatography A. 1085 (2): 179-189.
  • [27] Gobel, A., McArdell, C.S., Joss, A., Siegrist, H., Giger, W., 2007. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies, Science of the Total Environment. 372 (2-3): 361-371.
  • [28] Golet, E., Xifra, I., Siegrist, H., Alder, A.C., Giger, W., 2003. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil, Environmental Science Technology. 37 (15): 3243-3249.
  • [29] Gros, M., Petrovic, M., Barcelo, D., 2006. Development of a multiresidue analytical methodology based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters, Talanta. 70 (4): 678-690.
  • [30] Halling-Sorensen, B., Lutzhoft, H.C.H., Andersen, H.R., Ingerslev, F., 2000. Environmental risk assessment of antibiotics: comparison of mecillinam, trimethoprim and ciprofloxacin, Journal of Antimicrobial Chemotherapy. 46 (Suppl. 1), 53-58.
  • [31] Heberer T., 2002. Occurrence, fate, and removal of pharmaceutical restudies in aquatic environment-a review of recent research data, Toxicol Lett. 131: 5-17.
  • [32] Hirsch, R., Ternes, T., Haberer, K., Kratz, K.-L., 1999. Occurrence of antibiotics in the aquatic environment, The Science of the Total Environment. 225 (1-2): 109-118.
  • [33] Hou, J.P., Poole, J.W., 1971. Beta-lactam antibiotics e their physicochemical properties and biological activities in relation to structure, Journal of Pharmaceutical
  • [34] Karthikeyan, K.G., Meyer, M.T., 2006. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin. USA, Science of the Total Environment. 361 (1-3): 196-207.
  • [35] Khan, S.J., Ongerth, J.E., 2005. Occurrence and removal of pharmaceuticals at an Australian sewage treatment plant. Water 32 (4): 80-85.
  • [36] Khan, S.J., Roser, D.J., Davies, C.M., Peters, G.M., Stuetz, R.M., Tucker, R., Ashbolt, N.J., 2008. Chemical contaminants infeedlot wastes: concentrations, effects and attenuation. Environment International 34 (6): 839-859.
  • [37] Kim, S., Eichhorn, P., Jensen, J.N., Webber, A.S., Aga, D., 2005. Removal of antibiotics in wastewater: effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process, Environmental Science Technology. 39 (15): 5816-5823.
  • [38] Kim, S.-C., Carlson, K., 2006. Occurrence of ionophore antibiotics in water and sediments of a mixed-landscape watershed, Water Research. 40 (13), 2549-2560
  • [39] Kim, S., Jensen, J.N., Aga, D.S., Weber, A.S., 2007. Tetracycline as Na selector for resistant bacteria in activated sludge, Chemosphere. 66 (9): 1643-1651.
  • [40] Kirst, H.A., 2002. In: Schonfeld, W., Kirst, H.A. (Eds.), Macrolide Antibiotics. Birkhauser Verlag, Basel, pp. 1-14.
  • [41] Kobayashi, Y., Yasojima, M., Komori, K., Suzuki, Y., Tanaka, H., 2006. Removal characteristics of human antibiotics during wastewater treatment in Japan, Water Practice & Technology. 1 (3): 1-9.
  • [42] Kolpin D., Furlong E., Meyer M., Thurman E., Zaugg S., Barber L., Buxton H. 2002. Pharmaceuticals, hormones and other organic wastewater contaminants in U.S. streams, 1999– 2000: a national reconnaissance, Environ. Sci. Technol. 36: 1202–1211.
  • [43] Kulis J., McQuillan D., Chapman T., Mawhinney D., Meyerhein R., 2003. Antibotics in New Mexico wastewater and ground water, Reporting Status or Progress, New Mexico, September 22.
  • [44] Kummerer, K., Al-Ahmad, A., Mersch-Sundermann, V., 2000. Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test, Chemosphere 40 (7): 701-710.
  • [45] Kummerer, K., 2009. Antibiotics in the aquatic environment — a review — Part I, Chemosphere 75: 417-434.
  • [46] Levine, A.D., Meyer, M.T., Kish, G., 2006. Evaluation of the persistence of micropollutants through pure-oxygen activated sludge nitrification and denitrification, Water Environment Research. 78 (11): 2276-2285.
  • [47] Li, D., Yang, M., Hu, J., Zhang, Y., Chang, H., Jin, F., 2008. Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river, Water Research. 42 (1-2): 307-317.
  • [48] Lindberg, R.H., Wennberg, P., Johansson, M.I., Tysklind, M., Andersson, B.A.V., 2005. Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden, Environmental Science & Technology. 39 (10): 3421-3429.
  • [49] Lindberg, R., Olofsson, U., Rendahl, O., Tysklind, M., Andersson, B.A.V., 2006. Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge, Environmental Science Technology. 40 (3): 1042-1048.
  • [50] Loftin, K.A., Adams, C.D., Meyer, M.T., Surampalli, R., 2008. Effects of ionic strength, temperature, and pH on degradation of selected antibiotics, Journal of Environmental Quality. 37 (2), 378-386.
  • [51] Löffler, D., Ternes, T.A., 2003. Analytical method for the determination of the aminoglycoside gentamicin in hospital wastewater via liquid chromatography-electrospray-tandem mass spectrometry, Journal of Chromatography A. 1000 (1-2): 583-588.
  • [52] Marzo, A., Dal Bo, L., 1998. Chromatography as an analytical tool for selected antibiotic classes: a reappraisal addressed to pharmacokinetic applications, Journal of Chromatography A. 812 (1-2): 17-34.
  • [53] Masters, P.A., O’Bryan, T.A., Zurlo, J., Miller, D.Q., Joshi, N., 2003. Trimethoprimesulfamethoxazole revisited, Archives of Internal Medicine. 163 (4): 402-410.
  • [54] McArdell, C.S., Molnar, E., Suter, M.J.F., Giger, W., 2003. Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley watershed Switzerland, Environmental Science Technology. 37 (24): 5479-5486.
  • [55] Miao, X.S., Bishay, F., Chen, M., Metcalfe, C.D., 2004. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada, Environmental Science Technology. 38 (13): 3533-3541.
  • [56] Minh N.L., Khan S.J., Drewes J.E., Stuez R.M., 2010. Fate of antibiotics during municipal waste water recycling treatment processes, Water Research. 44: 4295-4323.
  • [57] Morse, A., Jackson, A., 2004. Fate of amoxicillin in two water reclamation systems, Water Air and Soil Pollution. 157: 117-132.
  • [58] Neu, H.C., 1992. The crisis in antibiotic resistance. Science 257 (5073), 1064-1073.
  • [59] Paxeus, N., 2004. Removal of selected non-steroidal antiinflammatory drugs (NSAIDs), gemfibrozil, carbamazepine, beta-blockers, trimethoprim and triclosan in conventional wastewater treatment plants in five EU countries and their discharge to the aquatic environment, Water Science and Technology. 50 (5): 253-260.
  • [60] Peng, X., Wang, Z., Kuang, W., Tan, J., Li, K., 2006. A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China, Science of the Total Environment. 371 (1-3): 314-322.
  • [61] Perez, S., Eichhorn, P., Aga, D.S., 2005. Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole and trimethoprim at different stages of sewage treatment, Environmental Toxicology and Chemistry. 24 (6): 1361-1367.
  • [62] Rabolle, M., Spliid, N.H., 2000. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil, Chemosphere. 40 (7): 715-722.
  • [63] Roberts, P.H., Thomas, K.V., 2006. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment, Science of the Total Environment. 356 (1-3): 143-153.
  • [64] Quiang, Z., Adams, C., 2004. Potentiometric determination of acid dissociation constants (pK(a)) for human and veterinary antibiotics, Water Research. 38 (12): 2874-2890.
  • [65] Salisbury, C.D.C., 1995. In: Oka, H., Nakazawa, H., Harada, K.E., MacNeil, J.D. (Eds.), Chemical Analysis for Antibiotics Used in Agriculture. AOAC International, Toronto.
  • [66] Schlüsener, M.P., Bester, K., Spiteller, M., 2003. Determination of antibiotics such as macrolides, ionophores and tiamulin in liquid manure by HPLC-MS/MS, Analytical and Bioanalytical Chemistry. 375 (7): 942-947.
  • [67] Skold, O., 2001. Resistance to trimethoprim and sulfonamides, Veterinary Research. 32 (3-4): 261-273.
  • [68] Sponza, D.T., Demirden, P., 2007. Treatability of sulfamerazine in sequential upflow anaerobic sludge blanket reactor (UASB)/ completely stirred tank reactor (CSTR) processes, Separation and Purification Technology. 56 (1): 108-117.
  • [69] Stackelberg, P.E., Gibs, J., Furlong, E.T., Meyer, M.T., Zaugg, S.D., Lippincott, R.L., 2007. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds, Sci. Total Environ. 377: 255-272.
  • [70] Tadkaew, N., Sivakumar, M., Khan, S.J., McDonald, J.A., Nghiem, L.D., 2010. Effect of mixed liquor pH on the removal of trace organic contaminants in a membrane bioreactor, Bioresource Technology. 101 (5): 1494-1500.
  • [71] Ternes, T.A., Stüber, J., Herrmann, N., McDowell, D., Ried, A., Kampmann, M., Teiser, B., 2003. Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater, Water Res. 37: 1976-1982.
  • [72] Thompson, A., (2005), “The fate and removal of pharmaceuticals during sewage treatment”, Ph.D. Thesis, School of Industrial and Manufacturing Science, Department of Water Sciences, Cranfield University, Cranfield, UK.
  • [73] Todar, K., 2002. In: Todar, K. (Ed.), Todars Online Textbook of Bacteriology.
  • [74] Tolls, J., 2001. Sorption of veterinary pharmaceuticals in soils: a review, Environmental Science and Technology. 35 (17): 3397-3406.
  • [75] Turiel, E., Bordin, G., Rodrı´guez, A.R., 2003. Trace enrichment of (fluoro)quinolone antibiotics in surface waters by solid-phase extraction and their determination by liquid chromatographyultraviolet detection, Journal of Chromatography A. 1008 (2): 145-155.
  • [76] Türkdoğan F.İ., Yetilmezsoy K., 2009. Appraisal of potential environmental risks associated with human antibiotic consumption in Turkey, Journal of Hazardous Materials. 166 (1): 297-308.
  • [77] Vieno, N.M., Hrkki, H., Tuhkanen, T., Kronberg, L., 2007. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant, Environ. Sci. Technol. 41: 5077-5084.
  • [78] Watkinson, A.J., Murbyc, E.J., Costanzo, S.D., 2007. Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling, Water Research. 41 (18): 4164-4176.
  • [79] Watkinson, A.J., Murby, E.J., Kolpin, D.W., Costanzo, S.D., 2009. The occurrence of antibiotics in an urban watershed: from wastewater to drinking water, Science of the Total Environment. 407 (8): 2711-2723.
  • [80] https://tr.wikipedia.org/wiki/Antibiyotik (erişim tarihi 25.10.2016)
  • [81] Yang, S., Cha, J., Carlson, K., 2005. Simultaneous extraction and analysis of 11 tetracycline and sulfonamide antibiotics in influent and effluent domestic wastewater by solid-phase extraction and liquid chromatography-electrospray ionization tandemmass spectrometry, Journal of Chromatography A. 1097 (1-2): 40-53.
  • [82] Zorita, S., Martensson, L., Mathiasson, L., 2009. Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden, Science of the Total Environment. 407 (8): 2760-2770.
  • [83] Zuccato, E., Castiglioni, S., Fanelli, R., 2005. Identification of the pharmaceuticals for human use contaminating the Italian aquatic environment, Journal of Hazardous Materials. 122 (3): 205-209.
Year 2017, Volume: 2 Issue: 2, 1 - 22, 29.12.2017

Abstract

References

  • [1] Adams, C., Asce, M., Wang, Y., Loftin, K., Meyer, M., 2002. Removal of antibiotics from surface and distilled water in conventional water treatment processes, J. Environ. Eng. 128: 253-260.
  • [2] Aksu, Z., Tunc, O., 2005. Application of biosorption for penicillin G removal: comparison with activated carbon, Process Biochemistry. 40 (2): 831-847.
  • [3] Arikan, O.A., 2008. Degradation and metabolization of chlortetracycline during the anaerobic digestion of manure from medicated calves, J. Hazard. Mater. 158: 485-490.
  • [4] Batt, At, Snow, D.D., Aga, D.S., 2006. Occurrence of sulphonamide antimicrobials in private water wells in Washington County, Idaho, USA, Chemosphere. 64: 1963-1971.
  • [5] Batt, A.L., Kim, S., Aga, D.S., 2007. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations, Chemosphere. 68 (3): 428-435.
  • [6] Belden, J.B., Maul, J.D., Lydy, M.J., 2007. Partitioning and photodegradation of ciprofloxacin in aqueous systems in the presence of organic matter, Chemosphere. 66 (8): 1390-1395.
  • [7] Boussu, K., Kindts, C., Vandecasteele, C., Van der Bruggen, B., 2007. Surfactant fouling of nanofiltration membranes: measurements and mechanisms, Chemphyschem 8 (12): 1836-1845.
  • [8] Brown, K.D., Kulis, J., Thomson, B., Chapman, T.H., Mawhinney, D.B., 2006. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico, Science of the Total Environment. 366 (2-3): 772-783.
  • [9] Cahill, J.D., Furlong, E.T., Burkhardt, M.R., Kolpin, D., Anderson, L.G., 2004. Determination of pharmaceutical compounds in surface-and ground-water samples by solidphase extraction and high-performance liquid chromatography-electrospray ionization mass spectrometry, Journal of Chromatography A. 1041 (1-2): 171-180.
  • [10] Carballa, M., Omil, F., Alder, A.C., Lema, J.M., 2006. Comparison between the conventional anaerobic digestion of sewage sludge and its combination with a chemical or thermal pre-treatment concerning the removal of pharmaceuticals and personal care products, Water Science and Technology. 53 (8): 109-117.
  • [11] Carberry, J., Englande, A., 1983. Sludge Characteristics and Behavior. Martinus Nijhoff Publishers, Boston, The Hague, Dordrecht, Lancaster.
  • [12] Cardoza, L.A., Knapp, C.W., Larive, C.K., Belden, J.B., Lydy, M.J., Graham, D.W., 2005. choPollution. 161 (1-4): 383-398.
  • [13] Cha, J.M., Yang, S., Carlson, K.H., 2005. Rapid analysis of trace levels of antibiotic polyether ionophores in surface water by solid-phase extraction and liquid chromatography with ion trap tandem mass spectrometric detection, Journal of Chromatography A. 1065 (2): 187-198.
  • [14] Cha, J.M., Yang, S., Carlson, K.H., 2006. Trace determination of beta-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry, Journal of Chromatography A. 1115 (1-2): 46-57.
  • [15] Chelliapan, S., Wilby, T., Sallis, P.J., 2006. Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics, Water Res. 40: 507-516.
  • [16] Choi, K.J., Kim, S.G., Kim, C.W., Kim, S.H., 2007a. Determination of antibiotic compounds in water by on-line SPE-LC/MSD, Chemosphere. 66 (6), 977-984.
  • [17] Choi, K.-J., Son, H.-J., Kim, S.-H., 2007b. Ionic treatment for removal of sulphonamide and tetracycline classes of antibiotic, Sci. Total Environ. 387: 247-256.
  • [18] Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N., Kroiss, H., 2005. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants, Water Research. 39 (19): 4797-4807.
  • [19] Costanzo, S.D., Murby, J., Bates, J., 2005. Ecosystem response to antibiotics entering the aquatic environment, Marine Pollution Bulletin. 51 (1-4): 218-223.
  • [20] Deshpande, A.D., Baheti, K.G., Chatterjee, N.R., 2004. Degradation of beta-lactam antibiotics, Current Science. 87 (12): 1684-1695.
  • [21] Donoho, A.L., 1984. Biochemical studies of the fate of monensin in animals and in the environment, Journal of Animal Science. 58 (6): 153-1539.
  • [22] Drewes, J.E., 2007. Analysis, fate and removal of pharmaceuticals in the water cycle. In: Petrovic, M., Barcelo, D. (Eds.), Wilson & Wilsons. Elsevier, Amsterdam, pp. 427-446.
  • [23] Glassmeyer, S.T., Shoemaker, J.A., 2005. Effects of chlorination on the persistence of pharmaceuticals in the environment, Bulletin of Environmental Contamination and Toxicology. 74 (1): 24-31.
  • [24] Gobel, A., McArdell, C.S., Suter, M.J.F., Giger, W., 2004. Trace determination of macrolide and sulfonamide antimicrobials, a human sulfonamide metabolite, and trimethoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry, Analytical Chemistry. 76 (16): 4756-4764.
  • [25] Gobel, A., Athomsen, A., McArdell, C.S., Joss, A., Giger, W., 2005a. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment, Environmental Science Technology. 39 (11): 3981-3989.
  • [26] Gobel, A., Thomsen, A., McArdell, C.S., Alder, A.C., Giger, W., Thei, N., Loffler, D., Ternes, T.A., 2005b. Extraction and determination of sulfonamides, macrolides, and trimethoprim in sewage sludge, Journal of Chromatography A. 1085 (2): 179-189.
  • [27] Gobel, A., McArdell, C.S., Joss, A., Siegrist, H., Giger, W., 2007. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies, Science of the Total Environment. 372 (2-3): 361-371.
  • [28] Golet, E., Xifra, I., Siegrist, H., Alder, A.C., Giger, W., 2003. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil, Environmental Science Technology. 37 (15): 3243-3249.
  • [29] Gros, M., Petrovic, M., Barcelo, D., 2006. Development of a multiresidue analytical methodology based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters, Talanta. 70 (4): 678-690.
  • [30] Halling-Sorensen, B., Lutzhoft, H.C.H., Andersen, H.R., Ingerslev, F., 2000. Environmental risk assessment of antibiotics: comparison of mecillinam, trimethoprim and ciprofloxacin, Journal of Antimicrobial Chemotherapy. 46 (Suppl. 1), 53-58.
  • [31] Heberer T., 2002. Occurrence, fate, and removal of pharmaceutical restudies in aquatic environment-a review of recent research data, Toxicol Lett. 131: 5-17.
  • [32] Hirsch, R., Ternes, T., Haberer, K., Kratz, K.-L., 1999. Occurrence of antibiotics in the aquatic environment, The Science of the Total Environment. 225 (1-2): 109-118.
  • [33] Hou, J.P., Poole, J.W., 1971. Beta-lactam antibiotics e their physicochemical properties and biological activities in relation to structure, Journal of Pharmaceutical
  • [34] Karthikeyan, K.G., Meyer, M.T., 2006. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin. USA, Science of the Total Environment. 361 (1-3): 196-207.
  • [35] Khan, S.J., Ongerth, J.E., 2005. Occurrence and removal of pharmaceuticals at an Australian sewage treatment plant. Water 32 (4): 80-85.
  • [36] Khan, S.J., Roser, D.J., Davies, C.M., Peters, G.M., Stuetz, R.M., Tucker, R., Ashbolt, N.J., 2008. Chemical contaminants infeedlot wastes: concentrations, effects and attenuation. Environment International 34 (6): 839-859.
  • [37] Kim, S., Eichhorn, P., Jensen, J.N., Webber, A.S., Aga, D., 2005. Removal of antibiotics in wastewater: effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process, Environmental Science Technology. 39 (15): 5816-5823.
  • [38] Kim, S.-C., Carlson, K., 2006. Occurrence of ionophore antibiotics in water and sediments of a mixed-landscape watershed, Water Research. 40 (13), 2549-2560
  • [39] Kim, S., Jensen, J.N., Aga, D.S., Weber, A.S., 2007. Tetracycline as Na selector for resistant bacteria in activated sludge, Chemosphere. 66 (9): 1643-1651.
  • [40] Kirst, H.A., 2002. In: Schonfeld, W., Kirst, H.A. (Eds.), Macrolide Antibiotics. Birkhauser Verlag, Basel, pp. 1-14.
  • [41] Kobayashi, Y., Yasojima, M., Komori, K., Suzuki, Y., Tanaka, H., 2006. Removal characteristics of human antibiotics during wastewater treatment in Japan, Water Practice & Technology. 1 (3): 1-9.
  • [42] Kolpin D., Furlong E., Meyer M., Thurman E., Zaugg S., Barber L., Buxton H. 2002. Pharmaceuticals, hormones and other organic wastewater contaminants in U.S. streams, 1999– 2000: a national reconnaissance, Environ. Sci. Technol. 36: 1202–1211.
  • [43] Kulis J., McQuillan D., Chapman T., Mawhinney D., Meyerhein R., 2003. Antibotics in New Mexico wastewater and ground water, Reporting Status or Progress, New Mexico, September 22.
  • [44] Kummerer, K., Al-Ahmad, A., Mersch-Sundermann, V., 2000. Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test, Chemosphere 40 (7): 701-710.
  • [45] Kummerer, K., 2009. Antibiotics in the aquatic environment — a review — Part I, Chemosphere 75: 417-434.
  • [46] Levine, A.D., Meyer, M.T., Kish, G., 2006. Evaluation of the persistence of micropollutants through pure-oxygen activated sludge nitrification and denitrification, Water Environment Research. 78 (11): 2276-2285.
  • [47] Li, D., Yang, M., Hu, J., Zhang, Y., Chang, H., Jin, F., 2008. Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river, Water Research. 42 (1-2): 307-317.
  • [48] Lindberg, R.H., Wennberg, P., Johansson, M.I., Tysklind, M., Andersson, B.A.V., 2005. Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden, Environmental Science & Technology. 39 (10): 3421-3429.
  • [49] Lindberg, R., Olofsson, U., Rendahl, O., Tysklind, M., Andersson, B.A.V., 2006. Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge, Environmental Science Technology. 40 (3): 1042-1048.
  • [50] Loftin, K.A., Adams, C.D., Meyer, M.T., Surampalli, R., 2008. Effects of ionic strength, temperature, and pH on degradation of selected antibiotics, Journal of Environmental Quality. 37 (2), 378-386.
  • [51] Löffler, D., Ternes, T.A., 2003. Analytical method for the determination of the aminoglycoside gentamicin in hospital wastewater via liquid chromatography-electrospray-tandem mass spectrometry, Journal of Chromatography A. 1000 (1-2): 583-588.
  • [52] Marzo, A., Dal Bo, L., 1998. Chromatography as an analytical tool for selected antibiotic classes: a reappraisal addressed to pharmacokinetic applications, Journal of Chromatography A. 812 (1-2): 17-34.
  • [53] Masters, P.A., O’Bryan, T.A., Zurlo, J., Miller, D.Q., Joshi, N., 2003. Trimethoprimesulfamethoxazole revisited, Archives of Internal Medicine. 163 (4): 402-410.
  • [54] McArdell, C.S., Molnar, E., Suter, M.J.F., Giger, W., 2003. Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley watershed Switzerland, Environmental Science Technology. 37 (24): 5479-5486.
  • [55] Miao, X.S., Bishay, F., Chen, M., Metcalfe, C.D., 2004. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada, Environmental Science Technology. 38 (13): 3533-3541.
  • [56] Minh N.L., Khan S.J., Drewes J.E., Stuez R.M., 2010. Fate of antibiotics during municipal waste water recycling treatment processes, Water Research. 44: 4295-4323.
  • [57] Morse, A., Jackson, A., 2004. Fate of amoxicillin in two water reclamation systems, Water Air and Soil Pollution. 157: 117-132.
  • [58] Neu, H.C., 1992. The crisis in antibiotic resistance. Science 257 (5073), 1064-1073.
  • [59] Paxeus, N., 2004. Removal of selected non-steroidal antiinflammatory drugs (NSAIDs), gemfibrozil, carbamazepine, beta-blockers, trimethoprim and triclosan in conventional wastewater treatment plants in five EU countries and their discharge to the aquatic environment, Water Science and Technology. 50 (5): 253-260.
  • [60] Peng, X., Wang, Z., Kuang, W., Tan, J., Li, K., 2006. A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China, Science of the Total Environment. 371 (1-3): 314-322.
  • [61] Perez, S., Eichhorn, P., Aga, D.S., 2005. Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole and trimethoprim at different stages of sewage treatment, Environmental Toxicology and Chemistry. 24 (6): 1361-1367.
  • [62] Rabolle, M., Spliid, N.H., 2000. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil, Chemosphere. 40 (7): 715-722.
  • [63] Roberts, P.H., Thomas, K.V., 2006. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment, Science of the Total Environment. 356 (1-3): 143-153.
  • [64] Quiang, Z., Adams, C., 2004. Potentiometric determination of acid dissociation constants (pK(a)) for human and veterinary antibiotics, Water Research. 38 (12): 2874-2890.
  • [65] Salisbury, C.D.C., 1995. In: Oka, H., Nakazawa, H., Harada, K.E., MacNeil, J.D. (Eds.), Chemical Analysis for Antibiotics Used in Agriculture. AOAC International, Toronto.
  • [66] Schlüsener, M.P., Bester, K., Spiteller, M., 2003. Determination of antibiotics such as macrolides, ionophores and tiamulin in liquid manure by HPLC-MS/MS, Analytical and Bioanalytical Chemistry. 375 (7): 942-947.
  • [67] Skold, O., 2001. Resistance to trimethoprim and sulfonamides, Veterinary Research. 32 (3-4): 261-273.
  • [68] Sponza, D.T., Demirden, P., 2007. Treatability of sulfamerazine in sequential upflow anaerobic sludge blanket reactor (UASB)/ completely stirred tank reactor (CSTR) processes, Separation and Purification Technology. 56 (1): 108-117.
  • [69] Stackelberg, P.E., Gibs, J., Furlong, E.T., Meyer, M.T., Zaugg, S.D., Lippincott, R.L., 2007. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds, Sci. Total Environ. 377: 255-272.
  • [70] Tadkaew, N., Sivakumar, M., Khan, S.J., McDonald, J.A., Nghiem, L.D., 2010. Effect of mixed liquor pH on the removal of trace organic contaminants in a membrane bioreactor, Bioresource Technology. 101 (5): 1494-1500.
  • [71] Ternes, T.A., Stüber, J., Herrmann, N., McDowell, D., Ried, A., Kampmann, M., Teiser, B., 2003. Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater, Water Res. 37: 1976-1982.
  • [72] Thompson, A., (2005), “The fate and removal of pharmaceuticals during sewage treatment”, Ph.D. Thesis, School of Industrial and Manufacturing Science, Department of Water Sciences, Cranfield University, Cranfield, UK.
  • [73] Todar, K., 2002. In: Todar, K. (Ed.), Todars Online Textbook of Bacteriology.
  • [74] Tolls, J., 2001. Sorption of veterinary pharmaceuticals in soils: a review, Environmental Science and Technology. 35 (17): 3397-3406.
  • [75] Turiel, E., Bordin, G., Rodrı´guez, A.R., 2003. Trace enrichment of (fluoro)quinolone antibiotics in surface waters by solid-phase extraction and their determination by liquid chromatographyultraviolet detection, Journal of Chromatography A. 1008 (2): 145-155.
  • [76] Türkdoğan F.İ., Yetilmezsoy K., 2009. Appraisal of potential environmental risks associated with human antibiotic consumption in Turkey, Journal of Hazardous Materials. 166 (1): 297-308.
  • [77] Vieno, N.M., Hrkki, H., Tuhkanen, T., Kronberg, L., 2007. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant, Environ. Sci. Technol. 41: 5077-5084.
  • [78] Watkinson, A.J., Murbyc, E.J., Costanzo, S.D., 2007. Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling, Water Research. 41 (18): 4164-4176.
  • [79] Watkinson, A.J., Murby, E.J., Kolpin, D.W., Costanzo, S.D., 2009. The occurrence of antibiotics in an urban watershed: from wastewater to drinking water, Science of the Total Environment. 407 (8): 2711-2723.
  • [80] https://tr.wikipedia.org/wiki/Antibiyotik (erişim tarihi 25.10.2016)
  • [81] Yang, S., Cha, J., Carlson, K., 2005. Simultaneous extraction and analysis of 11 tetracycline and sulfonamide antibiotics in influent and effluent domestic wastewater by solid-phase extraction and liquid chromatography-electrospray ionization tandemmass spectrometry, Journal of Chromatography A. 1097 (1-2): 40-53.
  • [82] Zorita, S., Martensson, L., Mathiasson, L., 2009. Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden, Science of the Total Environment. 407 (8): 2760-2770.
  • [83] Zuccato, E., Castiglioni, S., Fanelli, R., 2005. Identification of the pharmaceuticals for human use contaminating the Italian aquatic environment, Journal of Hazardous Materials. 122 (3): 205-209.
There are 83 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Reviews
Authors

Bahar İkizoğlu

Fatma İlter Türkdoğan

Publication Date December 29, 2017
Submission Date November 9, 2016
Published in Issue Year 2017 Volume: 2 Issue: 2

Cite

APA İkizoğlu, B., & Türkdoğan, F. İ. (2017). Yaygın Kullanımlı Antibiyotiklerin Konvansiyonel Arıtma Tesislerinde Giderimi. Sinop Üniversitesi Fen Bilimleri Dergisi, 2(2), 1-22.


Articles published in Sinopjns are licensed under CC BY-NC 4.0.