Research Article
BibTex RIS Cite

Domination Edge Integrity of Corona Products of C_n with P_m, C_m, K_(1,m)

Year 2021, Volume: 6 Issue: 1, 1 - 8, 11.06.2021
https://doi.org/10.33484/sinopfbd.692700

Abstract

Vulnerability is the most important concept in analysis of communication networks to disruption. Any network can be modelled by graphs so measures defined on graphs gives an idea in design. Integrity is one of the well-known vulnerability measures interested in remaining structure of a graph after any failure. Domination is also an another popular concept in network design. Nowadays new vulnerability measures take a great role in any failure not only on nodes also on links which have special properties. A new measure domination edge integrity of a connected and undirected graph was defined such as 𝐷𝐼′(𝐺)=𝑚𝑖𝑛{ |𝑆|+𝑚(𝐺−𝑆):𝑆 ⊆ 𝐸(𝐺)} where 𝑚(𝐺−𝑆) is the order of a maximum component of 𝐺−𝑆 and 𝑆 is an edge dominating set. In this paper some results concerning this parameter on corona products of graph structures 𝐶𝑛⊙𝐶𝑚, 𝐶𝑛⊙𝑃𝑚, 𝐶𝑛⊙𝐾1,𝑚 are presented.

References

  • Barefoot, C. A., Entringer, R., & Swart, H. (1987). Vulnerability in graphs-a comparative survey. Journal of Combinatorial Mathematics and Combinatorial Computing, 1(38), 13-22.
  • Goddard, W., & Swart, H. C. (1990). Integrity in graphs: bounds and basics. Journal of Combinatorial Mathematics and Combinatorial Computing, 7, 139-151.
  • Bagga, K. S., Beineke, L. W., Lipman, M. J., & Pippert, R. E. (1994). Edge-integrity: a survey. Discrete mathematics, 124(1-3), 3-12. https://doi.org/10.1016/0012-365X(94)90084-1
  • Arumugam, S., & Velammal, S. (1998). Edge domination in graphs. Taiwanese journal of Mathematics, 2(2), 173-179. https://doi.org/10.11650/twjm/1500406930
  • Hedetniemi, S. T., & Mitchell, S. (1977). Edge domination in trees. In Proc. 8th SE Conf. Combin., Graph Theory and Computing, Congr. Numer, 19, 489-509.
  • Sundareswaran, R., & Swaminathan, V. (2010). Domination integrity in graphs. In Proceedings of International Conference on Mathematical and Experimental Physics (pp. 46-57). Narosa Publishing House.
  • Kılıç, E., & Besirik, A. (2018). Domination edge integrity of graphs. Advanced Mathematical Models and Applications, 3(3), 234-238.
  • Besirik, A. (2019). Total domination integrity of graphs. Journal of Modern Technology and Engineering, 4(1), 11-19.
  • Buckley, F., & Harary, F. (1990). Distance in graphs. New York: Addison and Wesley.
  • Graham, L., Knuth, D. E., & Patashnik, O. (1989). Concrete Mathematics Addison-Wesley Publishing Company, New York, pg 79.
  • Kılıç, E., & Beşirik, A. (2020). Domination Edge Integrity of Corona Products of Pn with Pm, Cm, K1,m. Journal of Mathematical Sciences and Modelling, 3(1), 25-31. https://doi.org/10.33187/jmsm.638124

C_n ile P_m, C_m, K_(1,m) Graflarının Corona Çarpımlarının Ayrıt Baskın Bütünlüğü

Year 2021, Volume: 6 Issue: 1, 1 - 8, 11.06.2021
https://doi.org/10.33484/sinopfbd.692700

Abstract

Zedelenebilirlik, bir iletişim ağının bozulmalara karşı yapılan analizindeki en önemli kavramdır. Herhangi bir ağ graflar ile modellenebilir böylece graflar üzerinde tanımlanan ölçümler tasarımda bir fikir verir. Bütünlük kavramı herhangi bir bozulmadan sonra grafta geriye kalan yapılarla ilgilenen en çok bilinen zedelenebilrlik ölçümlerindendir. Baskınlık da ağ tasarımda yaygın olarak kullanılan önemli bir kavramdır. Günümüzde sadece tepeler üzerinde değil belirli bir özelliğe sahip ayrıtlar üzerinde oluşan hatalarda yeni zedelenebilirlik ölçümleri önemli rol oynamaktadır. Yeni bir ölçüm olan birleştirilmiş yönsüz bir grafın ayrıt baskın bütünlüğü 𝐷𝐼′(𝐺)=𝑚𝑖𝑛{ |𝑆|+𝑚(𝐺−𝑆):𝑆 ⊆ 𝐸(𝐺)} olarak tanımlanmıştır, burada 𝑚(𝐺−𝑆) 𝐺−𝑆 deki en büyük bileşenin tepe sayısını göstermekte ve 𝑆 bir ayrıt baskın kümedir. Bu çalışmada bu ölçüm ile ilgili bazı sonuçları 𝐶𝑛⊙𝐶𝑚, 𝐶𝑛⊙𝑃𝑚, 𝐶𝑛⊙𝐾1,𝑚 corona çarpımlarının oluşturduğu graf yapılarında gösterilmiştir.

References

  • Barefoot, C. A., Entringer, R., & Swart, H. (1987). Vulnerability in graphs-a comparative survey. Journal of Combinatorial Mathematics and Combinatorial Computing, 1(38), 13-22.
  • Goddard, W., & Swart, H. C. (1990). Integrity in graphs: bounds and basics. Journal of Combinatorial Mathematics and Combinatorial Computing, 7, 139-151.
  • Bagga, K. S., Beineke, L. W., Lipman, M. J., & Pippert, R. E. (1994). Edge-integrity: a survey. Discrete mathematics, 124(1-3), 3-12. https://doi.org/10.1016/0012-365X(94)90084-1
  • Arumugam, S., & Velammal, S. (1998). Edge domination in graphs. Taiwanese journal of Mathematics, 2(2), 173-179. https://doi.org/10.11650/twjm/1500406930
  • Hedetniemi, S. T., & Mitchell, S. (1977). Edge domination in trees. In Proc. 8th SE Conf. Combin., Graph Theory and Computing, Congr. Numer, 19, 489-509.
  • Sundareswaran, R., & Swaminathan, V. (2010). Domination integrity in graphs. In Proceedings of International Conference on Mathematical and Experimental Physics (pp. 46-57). Narosa Publishing House.
  • Kılıç, E., & Besirik, A. (2018). Domination edge integrity of graphs. Advanced Mathematical Models and Applications, 3(3), 234-238.
  • Besirik, A. (2019). Total domination integrity of graphs. Journal of Modern Technology and Engineering, 4(1), 11-19.
  • Buckley, F., & Harary, F. (1990). Distance in graphs. New York: Addison and Wesley.
  • Graham, L., Knuth, D. E., & Patashnik, O. (1989). Concrete Mathematics Addison-Wesley Publishing Company, New York, pg 79.
  • Kılıç, E., & Beşirik, A. (2020). Domination Edge Integrity of Corona Products of Pn with Pm, Cm, K1,m. Journal of Mathematical Sciences and Modelling, 3(1), 25-31. https://doi.org/10.33187/jmsm.638124
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Elgin Kılıc 0000-0002-1074-5589

Ayşe Beşirik 0000-0002-3980-196X

Publication Date June 11, 2021
Submission Date February 21, 2020
Published in Issue Year 2021 Volume: 6 Issue: 1

Cite

APA Kılıc, E., & Beşirik, A. (2021). Domination Edge Integrity of Corona Products of C_n with P_m, C_m, K_(1,m). Sinop Üniversitesi Fen Bilimleri Dergisi, 6(1), 1-8. https://doi.org/10.33484/sinopfbd.692700


Articles published in Sinopjns are licensed under CC BY-NC 4.0.