Research Article
BibTex RIS Cite

A Study on the Expansion of Graphite Layers Via In-Situ Polymerization of Melamine

Year 2023, Volume: 8 Issue: 2, 169 - 177, 28.12.2023
https://doi.org/10.33484/sinopfbd.1366684

Abstract

Graphene, renowned for its honeycomb lattice structure formed by densely packed sp2 hybridized carbon atoms, possesses exceptional electronic, thermal, chemical, and mechanical properties. The van der Waals-coupled graphene layers give rise to the well-known AB stacking, forming graphite. Despite the existence of several methods for graphite production, the production of graphene on a large scale remains challenging due to the lack of efficient techniques and the introduction of structural defects during the production process. Exfoliated graphite (EG), a potential solution, is typically derived from the thermal treatment of graphite intercalation compounds (GICs). Melamine, notably displaying significant expansion properties at low temperatures, has been used as an intercalation compound in limited studies. This study investigates the potential of melamine to induce the expansion of graphene layers when incorporated into graphite and subjected to thermal treatment. Raman and X-ray diffraction analyses were employed to assess structural changes.

References

  • Hu, H., Zhao, Z., Zhou, Q., Gogotsi, Y. & Qiu, J. (2012). The role of microwave absorption on formation of graphene from graphite oxide. Carbon, 50, 3267–73. https://doi.org/10.1016/j.carbon.2011.12.005
  • Partoens, B. & Peeters, F. M. (2006). From graphene to graphite: Electronic structure around the K point. Physical Review B - Condensed Matter and Materials Physics, 74, 1–11. https://doi.org/10.1103/PhysRevB.74.075404
  • Pei, S. & Cheng, H. M. (2012). The reduction of graphene oxide. Carbon, 50, 3210–28. https://doi.org/10.1016/j.carbon.2011.11.010
  • Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., McGovern, I. T., Holland, B., Byrne, M., Gun'Ko, Y. K., Boland, J. J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, C. & Coleman, J. N. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 3, 563-568. https://doi.org/10.1038/nnano.2008.215
  • Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R. & Ruoff R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22, 3906-3924. https://doi.org/10.1002/adma.201001068
  • Morales, G. M., Schifani, P., Ellis, G., Ballesteros, C., Martínez, G., Barbero, C. & Salavagione, H. J. (2011). High-quality few layer graphene produced by electrochemical intercalation and microwave-assisted expansion of graphite. Carbon, 49, 2809-2816. https://doi.org/10.1016/j.carbon.2011.03.008
  • Lee, S. M., Kim, J. H. & Ahn, J. H. (2015). Graphene as a flexible electronic material: Mechanical limitations by defect formation and efforts to overcome. Materials Today, 18, 336-344. https://doi.org/10.1016/j.mattod.2015.01.017
  • Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. (2011). Structural defects in graphene. Acs Nano, 5, 26-41. https://doi.org/10.1021/nn102598m
  • Cai, M., Thorpe, D., Adamson, D. H. & Schniepp, H. C. (2012). Methods of graphite exfoliation. Journal of Materials Chemistry, 22, 24992-5002. https://doi.org/10.1039/c2jm34517j
  • Schniepp, H. C., Li, J. L., McAllister, M. J., Sai, H., Herrera-Alonson, M., Adamson, D. H., Prud'homme, R. C., Saville, D. A. & Aksay, I. A. (2006). Functionalized single graphene sheets derived from splitting graphite oxide. Journal of Physical Chemistry B, 110, 8535-8539. https://doi.org/10.1021/jp060936f
  • Stankovich, S., Piner, R. D., Chen, X., Wu, N., Nguyen, S. T. & Ruoff, R. S. (2006). Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry, 16, 155-158. https://doi.org/10.1039/b512799h
  • Chung, D. D. L. (2002). Review: Graphite. Journal of Materials Science, 37, 1475-1489. https://doi.org/10.1023/A:1014915307738
  • Dresselhaus, M. S. & Dresselhaus, G. (1981). Intercalation compounds of graphite. Advances in Physics, 30, 139-326. https://doi.org/10.1080/00018738100101367
  • Guo, Y., Smith, R. B., Yu, Z., Efetov, D. K., Wang, J., Kim, P., Bazant, M. Z. & Brus L. E. (2016). Li intercalation into graphite: direct optical imaging and cahn-hilliard reaction dynamics. Journal of Physical Chemistry Letters, 7, 2151-2156. https://doi.org/10.1021/acs.jpclett.6b00625
  • Xu, J., Dou, Y., Wei, Z., Ma, J., Deng, Y., Li, Y. Liu, H. & Dou, S. (2017). Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Advanced Science, 4, 1700146. https://doi.org/10.1002/advs.201700146
  • Reinheimer, A., Wenzel, A. & Muenzenberger, H. (2004). US Patent, Pub. No: US7479513B2
  • Duan, H., Kang, H., Zhang, W., Ji, X., Li, Z. & Tang, J. (2014). Core–shell structure design of pulverized expandable graphite particles and their application in flame-retardant rigid polyurethane foams. Polymer International, 63, 72-83. https://doi.org/10.1002/pi.4489
  • Dyjak, S., Kiciński, W. & Huczko, A. (2015). Thermite-driven melamine condensation to CxNyHz graphitic ternary polymers: Towards an instant, large-scale synthesis of g-C3N4. Journal of Materials Chemistry A, 3, 9621-9631. https://doi.org/10.1039/c5ta00201j
  • Ansari, S. M., Sinha, B. B., Phase, D., Sen, D., Sastry, P. U., Kolekar, Y. D. & Ramana, C. V. (2019). Particle size, morphology, and chemical composition controlled CoFe2O4 nanoparticles with tunable magnetic properties via oleic acid based solvothermal synthesis for application in electronic devices. ACS Applied Nano Materials, 2, 1828-1843. https://doi.org/10.1021/acsanm.8b02009
  • Graf, D., Molitor, F., Ensslin, K., Stampfer, C., Jungen, A., Hierold, C. & Wirtz, L. (2007). Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Letters, 7, 238-242. https://doi.org/10.1021/NL061702A
  • Kim, T. H., Jeon, E., Ko, Y., Jang, B., Kim, B. S. & Song, H. K. (2014). Enlarging d-spacing of graphite and polarizing its surface charge for driving lithium ions fast. Journal of Materials Chemistry A, 2, 7600-7605. https://doi.org/10.1039/x0xx00000x
  • Skowroński, J.M. & Krawczyk, P. (2010). Improved hydrogen sorption/desorption capacity of exfoliated NiCl2-graphite intercalation compound effected by thermal treatment. Solid State Ionics, 181, 653-658. https://doi.org/10.1016/J.SSI.2010.02.026
  • Ka, B. H. & Oh, S. M. (2008). Electrochemical activation of expanded graphite electrode for electrochemical capacitor. Journal of The Electrochemical Society, 155, A685. https://doi.org/10.1149/1.2953525/XML
  • Morales, G. M., Schifani, P., Ellis, G., Ballesteros, C., Martínez, G., Barbero, C. & Salavagione, H. J. (2011). High-quality few layer graphene produced by electrochemical intercalation and microwave-assisted expansion of graphite. Carbon, 49, 2809-2816. https://doi.org/10.1016/j.carbon.2011.03.008
  • An, J. C., Lee, E. J. & Hong, I. (2017). Preparation of the spheroidized graphite-derived multi-layered graphene via GIC (graphite intercalation compound) method. Journal of Industrial and Engineering Chemistry, 47, 56-61. https://doi.org/10.1016/J.JIEC.2016.12.017
  • Murugan, P., Nagarajan, R. D., Shetty, B. H., Govindasamy, M. & Sundramoorthy, A. K. (2021). Recent trends in the applications of thermally expanded graphite for energy storage and sensors - a review. Nanoscale Adv., 3, 6294-6309. https://doi.org/10.1039/d1na00109d

Melaminin Yerinde Polimerizasyonu ile Grafit Katmanlarının Genişletilmesi Üzerine Bir Çalışma

Year 2023, Volume: 8 Issue: 2, 169 - 177, 28.12.2023
https://doi.org/10.33484/sinopfbd.1366684

Abstract

Yoğun bir şekilde paketlenmiş olup sp2 hibritlenmiş karbon atomlarından oluşan bal peteği kafes yapısıyla bilinen grafen, olağanüstü elektronik, termal, kimyasal ve mekanik özelliklere sahiptir. Van der Waals ile birleştirilmiş grafen katmanları, iyi bilinen AB istiflenmesine yol açarak grafit oluşturur. Grafit üretimi için çeşitli yöntemlerin varlığına rağmen, büyük ölçekte grafen üretimi, etkili tekniklerin bulunmaması ve üretim süreci sırasında yapısal kusurların ortaya çıkması nedeniyle zorlu olmaya devam ediyor. Potansiyel bir çözüm olan pul pul dökülmüş grafit (EG), tipik olarak grafit interkalasyon bileşiklerinin (GIC'ler) ısıl işleminden üretilmektedir. Özellikle düşük sıcaklıklarda önemli genleşme özellikleri sergileyen melamin, sınırlı çalışmalarda bir ara bileşik olarak kullanılmıştır. Bu çalışmada melaminin grafit içerisine dahil edildip ısıl işleme tabi tutulduğunda grafen katmanlarının genişlemesini tetikleme potansiyeline odaklanılmıştır. Yapısal değişiklikleri değerlendirmek için Raman ve X-ışını kırınım analizleri kullanılmıştır.

References

  • Hu, H., Zhao, Z., Zhou, Q., Gogotsi, Y. & Qiu, J. (2012). The role of microwave absorption on formation of graphene from graphite oxide. Carbon, 50, 3267–73. https://doi.org/10.1016/j.carbon.2011.12.005
  • Partoens, B. & Peeters, F. M. (2006). From graphene to graphite: Electronic structure around the K point. Physical Review B - Condensed Matter and Materials Physics, 74, 1–11. https://doi.org/10.1103/PhysRevB.74.075404
  • Pei, S. & Cheng, H. M. (2012). The reduction of graphene oxide. Carbon, 50, 3210–28. https://doi.org/10.1016/j.carbon.2011.11.010
  • Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., McGovern, I. T., Holland, B., Byrne, M., Gun'Ko, Y. K., Boland, J. J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, C. & Coleman, J. N. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 3, 563-568. https://doi.org/10.1038/nnano.2008.215
  • Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R. & Ruoff R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22, 3906-3924. https://doi.org/10.1002/adma.201001068
  • Morales, G. M., Schifani, P., Ellis, G., Ballesteros, C., Martínez, G., Barbero, C. & Salavagione, H. J. (2011). High-quality few layer graphene produced by electrochemical intercalation and microwave-assisted expansion of graphite. Carbon, 49, 2809-2816. https://doi.org/10.1016/j.carbon.2011.03.008
  • Lee, S. M., Kim, J. H. & Ahn, J. H. (2015). Graphene as a flexible electronic material: Mechanical limitations by defect formation and efforts to overcome. Materials Today, 18, 336-344. https://doi.org/10.1016/j.mattod.2015.01.017
  • Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. (2011). Structural defects in graphene. Acs Nano, 5, 26-41. https://doi.org/10.1021/nn102598m
  • Cai, M., Thorpe, D., Adamson, D. H. & Schniepp, H. C. (2012). Methods of graphite exfoliation. Journal of Materials Chemistry, 22, 24992-5002. https://doi.org/10.1039/c2jm34517j
  • Schniepp, H. C., Li, J. L., McAllister, M. J., Sai, H., Herrera-Alonson, M., Adamson, D. H., Prud'homme, R. C., Saville, D. A. & Aksay, I. A. (2006). Functionalized single graphene sheets derived from splitting graphite oxide. Journal of Physical Chemistry B, 110, 8535-8539. https://doi.org/10.1021/jp060936f
  • Stankovich, S., Piner, R. D., Chen, X., Wu, N., Nguyen, S. T. & Ruoff, R. S. (2006). Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry, 16, 155-158. https://doi.org/10.1039/b512799h
  • Chung, D. D. L. (2002). Review: Graphite. Journal of Materials Science, 37, 1475-1489. https://doi.org/10.1023/A:1014915307738
  • Dresselhaus, M. S. & Dresselhaus, G. (1981). Intercalation compounds of graphite. Advances in Physics, 30, 139-326. https://doi.org/10.1080/00018738100101367
  • Guo, Y., Smith, R. B., Yu, Z., Efetov, D. K., Wang, J., Kim, P., Bazant, M. Z. & Brus L. E. (2016). Li intercalation into graphite: direct optical imaging and cahn-hilliard reaction dynamics. Journal of Physical Chemistry Letters, 7, 2151-2156. https://doi.org/10.1021/acs.jpclett.6b00625
  • Xu, J., Dou, Y., Wei, Z., Ma, J., Deng, Y., Li, Y. Liu, H. & Dou, S. (2017). Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Advanced Science, 4, 1700146. https://doi.org/10.1002/advs.201700146
  • Reinheimer, A., Wenzel, A. & Muenzenberger, H. (2004). US Patent, Pub. No: US7479513B2
  • Duan, H., Kang, H., Zhang, W., Ji, X., Li, Z. & Tang, J. (2014). Core–shell structure design of pulverized expandable graphite particles and their application in flame-retardant rigid polyurethane foams. Polymer International, 63, 72-83. https://doi.org/10.1002/pi.4489
  • Dyjak, S., Kiciński, W. & Huczko, A. (2015). Thermite-driven melamine condensation to CxNyHz graphitic ternary polymers: Towards an instant, large-scale synthesis of g-C3N4. Journal of Materials Chemistry A, 3, 9621-9631. https://doi.org/10.1039/c5ta00201j
  • Ansari, S. M., Sinha, B. B., Phase, D., Sen, D., Sastry, P. U., Kolekar, Y. D. & Ramana, C. V. (2019). Particle size, morphology, and chemical composition controlled CoFe2O4 nanoparticles with tunable magnetic properties via oleic acid based solvothermal synthesis for application in electronic devices. ACS Applied Nano Materials, 2, 1828-1843. https://doi.org/10.1021/acsanm.8b02009
  • Graf, D., Molitor, F., Ensslin, K., Stampfer, C., Jungen, A., Hierold, C. & Wirtz, L. (2007). Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Letters, 7, 238-242. https://doi.org/10.1021/NL061702A
  • Kim, T. H., Jeon, E., Ko, Y., Jang, B., Kim, B. S. & Song, H. K. (2014). Enlarging d-spacing of graphite and polarizing its surface charge for driving lithium ions fast. Journal of Materials Chemistry A, 2, 7600-7605. https://doi.org/10.1039/x0xx00000x
  • Skowroński, J.M. & Krawczyk, P. (2010). Improved hydrogen sorption/desorption capacity of exfoliated NiCl2-graphite intercalation compound effected by thermal treatment. Solid State Ionics, 181, 653-658. https://doi.org/10.1016/J.SSI.2010.02.026
  • Ka, B. H. & Oh, S. M. (2008). Electrochemical activation of expanded graphite electrode for electrochemical capacitor. Journal of The Electrochemical Society, 155, A685. https://doi.org/10.1149/1.2953525/XML
  • Morales, G. M., Schifani, P., Ellis, G., Ballesteros, C., Martínez, G., Barbero, C. & Salavagione, H. J. (2011). High-quality few layer graphene produced by electrochemical intercalation and microwave-assisted expansion of graphite. Carbon, 49, 2809-2816. https://doi.org/10.1016/j.carbon.2011.03.008
  • An, J. C., Lee, E. J. & Hong, I. (2017). Preparation of the spheroidized graphite-derived multi-layered graphene via GIC (graphite intercalation compound) method. Journal of Industrial and Engineering Chemistry, 47, 56-61. https://doi.org/10.1016/J.JIEC.2016.12.017
  • Murugan, P., Nagarajan, R. D., Shetty, B. H., Govindasamy, M. & Sundramoorthy, A. K. (2021). Recent trends in the applications of thermally expanded graphite for energy storage and sensors - a review. Nanoscale Adv., 3, 6294-6309. https://doi.org/10.1039/d1na00109d
There are 26 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Research Articles
Authors

Tuğrul Yumak 0000-0002-3688-3525

Publication Date December 28, 2023
Submission Date September 26, 2023
Published in Issue Year 2023 Volume: 8 Issue: 2

Cite

APA Yumak, T. (2023). A Study on the Expansion of Graphite Layers Via In-Situ Polymerization of Melamine. Sinop Üniversitesi Fen Bilimleri Dergisi, 8(2), 169-177. https://doi.org/10.33484/sinopfbd.1366684


Articles published in Sinopjns are licensed under CC BY-NC 4.0.