Research Article
BibTex RIS Cite

Heterometalik Hofmann Tipi Benzeri Bir Bileşiğin Kristal Yapısı ve Hirshfeld Yüzey Analizi

Year 2024, Volume: 9 Issue: 1, 72 - 95, 29.06.2024
https://doi.org/10.33484/sinopfbd.1370598

Abstract

Bu çalışmada; açık formül [Cd(H2O)2Ni(CN)4]4[Cd(H2O)4Ni(CN)4]5 ile tanımlanan yeni bir heterometalik bileşik, kristal formda sentezlendi. Su molekülleri, [Ni(CN)4]2− anyonları ve kadmiyum geçiş metali atomları gibi bileşenlerden oluşan bu yeni kristal yapının, diğer geçiş metali atomlarıyla bile daha önce elde edilmiş olabilecek hiçbir analogu yoktur. Yeni bir bileşik ve kristalin eşsiz bir örneğidir. Bu heterometalik bileşiğin yapısal özellikleri, tek kristal X-ışını kırınım spektroskopisi (SC-XRD), FT-IR spektroskopisi, termal analiz ve elementel analiz yöntemleriyle karakterize edilmiştir. SC-XRD tekniğinden elde edilen verilere göre bu heterometalik bileşik, monoklinik kristal sistemine ve C2/c uzay grubuna sahiptir. Bu bileşiğin asimetrik birimi beş Cd(II) iyonu, beş Ni(II) iyonu, on sekiz siyanür ligandı ve on dört koordineli su ligandı molekülünden oluşur. Ayrıca bu heterometalik Hofmann tipi bileşik hakkında daha fazla bilgi edinmek amacıyla Gaussian 03 programı ile teorik hesaplamalar yapılmıştır. Bu yeni bileşiğin kimyasal özellikleri, HOMO ve LUMO değerleri ve doğal bağ yörünge (NBO) analizleri kullanılarak hesaplandı. Ayrıca bu bileşiğin asimetrik biriminin Hirshfeld yüzey analizi CrystalExplorer programı ile yapılmıştır. Hirshfeld yüzey analizi sonucunda bu yeni kristal bileşiği oluşturan zayıf molekül içi ve moleküller arası kuvvetler hakkında kapsamlı bilgiler elde edildi.

Project Number

2017/25

Thanks

The authors wish to thank in particular Kütahya Dumlupınar University, Türkiye, for the technical [Department of Physics and Chemistry; Advanced Technologies Center (İLTEM)] and financial support with the project number 2017/25.

References

  • OpenStax, Chemistry. OpenStax CNX. Jun 20, 2016 http://cnx.org/contents/85abf193-2bd2-4908-8563-90b8a7ac8df6@9.311.
  • The Materials Project (2020). Materials Data on K2Ni(CN)4 by Materials Project. United States. https://doi.org/10.17188/1307699
  • Hofmann, K. A. & Küspert, F. (1897). Verbindungen von kohlenwasserstoffen mit metallsalzen. Zeitschrift Für Anorganische Chemie, 15(1), 204-207. http:/doi.org/10.1002/zaac.18970150118
  • Hagan, M. (1962). Clathrate Inclusion Compounds. Reinhold Publishing Corporation, Chapman & Hall Ltd., New York. p. 5
  • Iwamoto, T. (1984). Inclusion Compounds, Vol. 1, Chapter 2 (Eds. J. L. Atwood, J. E. D. Davies, and D. D. MacNicol). Academic Press, London, p. 29.
  • Türköz, D., Kartal, Z., & Bahçeli, S. (2004). Ft-Ir Spectroscopic Study Of Co(1-Propanethiol)2Ni(CN)4·Benzene Clathrate. Zeitschrift Für Naturforschung A, 59, 7-8. http:/doi.org/10.1515/zna-2004-7-819
  • Kartal, Z. (2005). IR spectroscopic study of M (benzoic acid)2Ni(CN)4.(1,4-dioxane) clathrate (M = Ni, Cd and Co). Zeitschrift für Naturforschung A, 60(A), 469-472. http:/doi.org/10.1515/zna-2005-0613
  • Kartal, Z., Parlak, C., Şentürk, Ş., Aytekin, M. T. & Şenyel, M. (2007). FT-IR Spectroscopic Study of the Hofmann-Td-type Clathrates: Ni(1,9- diaminononane)Mʹ(CN)4⋅2G (Mʹ = Cd or Hg, G = Benzene, 1,2-Dichlorobenzene or 1,4-Dichlorobenzene). Croatica Chemica Acta, 80(1), 9-15. https://hrcak.srce.hr/12805
  • Kartal, Z. (2009). FT-IR spectroscopic study on some Hofmann-type clathrates: M(p-Benzoquinone)Ni(CN)4·2G (M = Mn, Co, Ni or Hg; G = Aniline). Journal of Molecular Structure, 938(1-3), 70–75. http:/doi.org/10.1016/j.molstruc.2009.09.005
  • Kartal, Z. & Sayın, E. (2011). FTIR spectroscopic and thermal study of M(Cyclohexanethiol)2Ni(CN)4.(1,4-dioxane) clathrate (M = Mn, Co, Ni and Cd). Journal of Molecular Structure, 994, 170-178. http:/doi.org/10.1016/j.molstruc.2011.03.014
  • Kartal, Z. (2012). Vibrational spectroscopic investigation on some M(Benzonitrile)2Ni(CN)4 complexes (M = Ni, Zn, Cd and Hg). Brazilian Journal of Physics, 42, 6-13. http:/doi.org/10.1007/s13538-011-0054-x
  • Kartal, Z. & Türk, T. (2021). FT-IR spectroscopic and thermal study of M(1,6-hexanedithiol) Ni(CN)4.2(1,4-dioxane) clathrate(M = Mn, Co, Ni and Cd). Journal of Molecular Structure, 1014, 74-80. http:/doi.org/10.1016/j.molstruc.2012.01.031
  • Kartal, Z. (2016). Synthesis, spectroscopic, thermal and structural properties of [M(3-aminopyridine)2Ni(μ-CN)2(CN)2]n [M(II) = Co and Cu] heteropolynuclear cyano-bridged complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 152, 577–583. http:/doi.org/10.1016/j.saa.2014.12.117
  • Kartal, Z. & Yavuz, A. (2018). The synthesis and the spectroscopic, thermal, and structural properties of the M2[(fumarate)Ni(CN)4].2(1,4-dioxane) clathrate (M = Co, Ni, Cd and Hg). Journal of Molecular Structure, 1155, 171-183. http:/doi.org/ 10.1016/j.molstruc.2017.10.107
  • Kartal, Z., Şahin, O. & Yavuz, A. (2018). The synthesis of two new Hofmann-type M(3-aminopyridine)2Ni(CN)4 [M = Zn(II)and Cd(II)] complexes and the characterization of their crystal structure by various spectroscopic methods. Journal of Molecular Structure, 1171, 578-586. http:/doi.org/10.1016/j.molstruc.2018.06.042
  • Kartal, Z. & Şahin, O. (2021). Synthesis, spectroscopic, thermal, crystal structure prop- erties and characterization of new Hofmann-type-like clathrates with 4-aminopyridine and water. Turkish Journal of Chemistry, 45, 616–633. http:/doi.org/10.3906/ kim- 2011- 29
  • Kartal, Z. & Şahin, O. (2021). Synthesis, spectroscopic, thermal, crystal structure prop- erties, and characterization of new Hofmann-Td-type complexes with 3- aminopyridine, Turkish. Journal of Chemistry, 45, 942–955. http:/doi.org/10.3906/kim-2101-32
  • Kartal, Z., Şahin, O. & Yavuz, A. (2019). Synthesis of Hofmann-type Zn(H2O)2Ni(CN)4.nG (G = water and 1,4-dioxane) clathrates and the determination of their structural properties by various spectroscopic methods, Turkish Journal of Chemistry, 43(6), 1608–1621. http:/doi.org/10.3906/kim-1906-26
  • Kartal, Z. & Şahin, O. (2022). Synthesis of two Hofmann type and Hofmann-type-like compounds in crystal form from 4-aminopyridine and their characterizations by various methods. Journal of Molecular Structure, 1252, 132088. https://doi.org/10.1016/j.molstruc.2021.132088.
  • Nakamoto, K. (2009). Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Applications in coordination, organometallic, and bioinorganic chemistry, John Wiley and Sons, Hoboken, New Jersey.
  • Smékal, Z., Císařová, I. & Mroziński, J. (2001). Cyano-bridged bimetallic complexes of copper(II) with tetracyanonickelate(II). Crystal structure of [Cu(dpt)Ni(CN)4]. Polyhedron, 20, 3301–3306.http:/ doi.org/10.1016/S0277-5387(01)00942-1
  • Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica, A64,112-122. https://doi.org/10.1107/S0108767307043930.
  • Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 3-8. http://dx.doi.org/10.1107/S2053229614024218
  • APEX2, Bruker AXS Inc. Madison Wisconsin USA (2013).
  • Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). Mercury 4.0: from visualization to analysis, design and prediction. Journal of Applied. Crystalography, 53, 226-235. https://doi.org/10.1107/S1600576719014092
  • Şenocak, A., Karadağ, A., Soylu, M. S. & Andac, O. (2015). Two novel cyanido-bridged polymeric complexes with suspension bridge type connections and a series of related complex salts: crystallographic and thermal characterizations. New Journal of Chemistry, 39(5), 3675-3686. https://doi.org/10.1039/C5NJ00071H
  • Kurkcuoglu, G. S., Hokelek, T., Aksel, M., Yesilel, O. Z. & Dal, H. (2011). Cyano-Bridged Heteropolynuclear Ni(II), Cu(II) and Cd(II) Complexes, [M(deten) Ni(μ-CN) (CN) ]. Journal of Inorganic and Organometallic Polymers and Materials, 21(3), 602-610. http:/doi.org/10.1007/s10904-011-9494-6
  • Kürkçüoğlu, G. S., Sayin, E. & Şahin, O. (2015). Cyanide bridged hetero-metallic polymeric complexes: Syntheses, vibrational spectra, thermal analyses and crystal structures of complexes [M(1,2-dmi)2 Ni(μ-CN)4]n (M = Zn (II) and Cd (II)). Journal of Molecular Structure, 1101, 82-90. https://doi.org/10.1016/j.molstruc.2015.08.013
  • Kürkçüoğlu, G. S., Hökelek, T., Yesilel, O. Z. & Aksay, S. (2008). Synthesis, IR spectrum, thermal property and crystal structure of cyano-bridged heteronuclear polymeric complex, [Cd(teta)Ni(mu-CN)(2)(CN)(2)] center dot 2H(2)O. Structural Chemistry, 19(3), 493-499. http:/doi.org/ 10.1007/s11224-008-9309-8
  • Paharova, J., Cernak, J., Zak, Z. & Marek, J. (2007). Use of multi-N-donor ligands for preparation of organic–inorganic hybrid materials: Crystal structures of ionic [M(aepn)2][Ni(CN)4]·H2O and polymeric M(aepn)Ni(CN)4 (M=Zn(II), Cd(II); aepn=N-(2-aminoethyl)-1,3-propanediamine). Journal of Molecular Structure, 842, 117-124. http:/doi.org/10.1016/j.molstruc.2006.12.022
  • Collins, J. B., Schleyer, P. v. R., Binkley, J. S. & Pople, J. A. (1976) Self-Consistent molecular orbital methods. 17. Geometries and binding energies of second-row molecules. A comparison of three basis sets. Journal of Chemical Physics, 64, 5142-5151. http:/doi.org/10.1063/1.432189
  • Frisch,MJ, Trucks,GW, Schlegel,HB, Scuseria,GE, Robb,MA, Cheeseman,JR, Montgomery,JrJA, Vreven,T, Kudin, KN, Burant,JC, Millam,JM, Iyengar,SS, Tomasi,J, Barone,V, Mennucci, B, Cossi, M, Scalmani, G, Rega, N, Petersson, GA, Nakatsuji, H, Hada, M, Ehara, M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai,H, Klene,M, Li, X, Knox,JE, Hratchian,HP, Cross,JB, Bakken,V, Adamo,C, Jaramillo,J, Gomperts,R, Stratmann,RE, Yazyev,O, Austin,AJ, Cammi,R, Pomelli,C, Ochterski,JW, Ayala,PY, Morokuma,K, Voth,GA, Salvador,P, Dannenberg,JJ, Zakrzewski,VG, Dapprich,S, Daniels,AD, Strain,MC, Farkas,O, Malick, DK, Rabuck,AD, Raghavachari,K, Foresman,JB, Ortiz,JV, Cui,Q, Baboul,AG, Clifford,S, Cioslowski,J, Stefanov,BB, Liu,G, Liashenko,A, Piskorz,P, Komaromi,I, Martin,RL, Fox,DJ, Keith,T, Al-Laham,MA, Peng,CY, Nanayakkara,A, Challacombe,M, Gill,PMW, Johnson,B, Chen,W, Wong,MW, Gonzalez,C. & Pople,JA. (2004). Gaussian 03 Revision D.01. Gaussian, Inc., Wallingford CT.
  • Dennington, R., Keith, T. & Millam, J. (2007). Gauss View, Version 4.1.2. Semichem Inc., Shawnee Mission.
  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, 5648–5652. http:/doi.org/10.1063/1.464913
  • Lee, C., Yang, W. & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789. http:/doi.org/ 10.1103/PhysRevB.37.785
  • Peng, C., Ayala, P. Y., Schlegel, H. B. & Frisch, M. J. (1996). Using redundant internal coordinates to optimize equilibrium geometries and transition states. Journal of Computaional Chemistry, 17, 49–56.
  • Stephens, P. J., Devlin, F. J., Chablowski, C. F. & Frisch, M. J. (1994). Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. Journal of Physical Chemistry, 98, 11623–11627. https://doi.org/10.1021/j100096a001
  • Pearson, P. G. (2005). Chemical hardness and density functional theory. Journal of Chemical Sciences, 117, 5, 369-377. https://doi.org/10.1007/BF02708340
  • Parr, R. G. & Pearson, R. G. (1983). Absolute hardness: companion parameter to absolute electronegativity. Journal of American Chemical Society, 105, 26, 7512-7516. https://doi.org/10.1021/ja00364a005
  • Mebi, C. A. (2011). DFT study on structure, electronic properties, and reactivity of cis-isomers of [(NC5H4-S)2Fe(CO)2]. Journal of Chemical Sciences, 123, 727–731.https://doi.org/10.1007/s12039-011-0131-2
  • Kumar, C. P. & Buddhadev, M. (2003). HSAB principle applied to the time evolution of chemical reactions. Journal of American Chemical Society, 125, 9, 2705-2710. https://doi.org/10.1021/ja0276063
  • Nataraj, A., Balachandran, V. & Karthick, T. (2013). Molecular orbital studies (hardness, chemical potential, electrophilicity, and first electron excitation), vibrational investigation and theoretical NBO analysis of 2-hydroxy-5-bromobenzaldehyde by density functional method. Journal of Molecular Structure, 1031, 221–233. http:/doi.org/10.1016/j.molstruc.2012.09.047
  • Elusta, M. I., Başaran, M. A. & Kandemirli, F. (2019). Theoretical studies on mild steel corrosion inhibition by 5-substituted 1h-tetrazoles in acidic media. International Journal of Electrochemical Science, 14, 2743 – 2756. http:/doi.org/10.20964/2019.03.46
  • Kartal, Z. & Şahin, O. (2022). Synthesis of two Hofmann type and Hofmann-type-like compounds in crystal form from 4-aminopyridine and their characterizations by various methods. Journal of Molecular Structure, 1252, 132088. https://doi.org/10.1016/j.molstruc.2021.132088
  • Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. Journal of Applied Crystalography, 54(3), 1006–1011. http:/doi.org/10.1107/S1600576721002910
  • Praprotnik, M., Janežič, D. & Mavri, J. (2004). Temperature dependence of water vibrational spectrum: a molecular Dynamics simulation study. Journal of Physical Chemistry A, 108, 11056-11062. http://doi.org/10.1021/jp046158d
  • Carey, D. M. & Korenowski, G. M. (1998). Measurement of the Raman spectrum of liquid water. Journal of Chemical Physics, 108(7), 2669-2675. http://doi.org/10.1063/1.475659
  • Zhang, C., Khaliullin, R. Z, Bovi, D., Guidoni, L. & Kühne, T. D. (2013). Vibrational signature of water molecules in asymmetric hydrogen bonding environments. Journal of Physical Chemistry Letters, 4(19), 3245-3250. http://doi.org/10.1021/jz401321x
  • Sharpe, A. G. (1976). The Chemistry of Cyano Complexes of the Transition Metals, Academic Press, London.
  • McCullough, R. L., Jones, L. H. & Crosby, G. A. (1960). An analysis of the vibrational spectrum of the tetracyanonickelate(II) ion in a crystal lattice, Spectrochimica Acta, 16(8), 929–944. https://doi.org/10.1016/0371-1951(60)80057-4

Crystal Structure and Hirshfeld Surface Analysis of a Heterometallic Hofmann-Type-Like Compound

Year 2024, Volume: 9 Issue: 1, 72 - 95, 29.06.2024
https://doi.org/10.33484/sinopfbd.1370598

Abstract

In this study; a new heterometallic compound defined by the open formula [Cd(H2O)2Ni(CN)4]4[Cd(H2O)4Ni(CN)4]5 was synthesized in crystal form. Consisting of components such as water molecules, [Ni(CN)4]2− anions, and cadmium transition metal atoms, this new crystal structure has no analogues which might have been previously obtained, even with other transition metal atoms. It is a new compound and a unique example of a crystal. The structural properties of this heterometallic compound have been characterized by single crystal X-ray diffraction spectroscopy (SC-XRD), FT-IR spectroscopy, thermal analysis and elemental analysis methods. According to the data obtained from the SC-XRD technique, this heterometallic compound has a monoclinic crystal system and a C2/c space group. The asymmetric unit of this compound consists of five Cd(II) ions, five Ni(II) ions, eighteen cyanide ligands, and fourteen coordinated water ligand molecules. In addition, theoretical calculations have been made with the Gaussian 03 program in order to obtain more information about this heterometallic Hofmann-type-like compound. The chemical properties of this new compound have been calculated using its HOMO and LUMO values and the natural bond orbital (NBO) analyses. In addition, Hirshfeld surface analysis of the asymmetric unit of this compound has been performed with the CrystalExplorer program. As a result of the Hirshfeld surface analysis, extensive information has been obtained about the weak intramolecular and intermolecular forces that form this new crystalline compound.

Project Number

2017/25

References

  • OpenStax, Chemistry. OpenStax CNX. Jun 20, 2016 http://cnx.org/contents/85abf193-2bd2-4908-8563-90b8a7ac8df6@9.311.
  • The Materials Project (2020). Materials Data on K2Ni(CN)4 by Materials Project. United States. https://doi.org/10.17188/1307699
  • Hofmann, K. A. & Küspert, F. (1897). Verbindungen von kohlenwasserstoffen mit metallsalzen. Zeitschrift Für Anorganische Chemie, 15(1), 204-207. http:/doi.org/10.1002/zaac.18970150118
  • Hagan, M. (1962). Clathrate Inclusion Compounds. Reinhold Publishing Corporation, Chapman & Hall Ltd., New York. p. 5
  • Iwamoto, T. (1984). Inclusion Compounds, Vol. 1, Chapter 2 (Eds. J. L. Atwood, J. E. D. Davies, and D. D. MacNicol). Academic Press, London, p. 29.
  • Türköz, D., Kartal, Z., & Bahçeli, S. (2004). Ft-Ir Spectroscopic Study Of Co(1-Propanethiol)2Ni(CN)4·Benzene Clathrate. Zeitschrift Für Naturforschung A, 59, 7-8. http:/doi.org/10.1515/zna-2004-7-819
  • Kartal, Z. (2005). IR spectroscopic study of M (benzoic acid)2Ni(CN)4.(1,4-dioxane) clathrate (M = Ni, Cd and Co). Zeitschrift für Naturforschung A, 60(A), 469-472. http:/doi.org/10.1515/zna-2005-0613
  • Kartal, Z., Parlak, C., Şentürk, Ş., Aytekin, M. T. & Şenyel, M. (2007). FT-IR Spectroscopic Study of the Hofmann-Td-type Clathrates: Ni(1,9- diaminononane)Mʹ(CN)4⋅2G (Mʹ = Cd or Hg, G = Benzene, 1,2-Dichlorobenzene or 1,4-Dichlorobenzene). Croatica Chemica Acta, 80(1), 9-15. https://hrcak.srce.hr/12805
  • Kartal, Z. (2009). FT-IR spectroscopic study on some Hofmann-type clathrates: M(p-Benzoquinone)Ni(CN)4·2G (M = Mn, Co, Ni or Hg; G = Aniline). Journal of Molecular Structure, 938(1-3), 70–75. http:/doi.org/10.1016/j.molstruc.2009.09.005
  • Kartal, Z. & Sayın, E. (2011). FTIR spectroscopic and thermal study of M(Cyclohexanethiol)2Ni(CN)4.(1,4-dioxane) clathrate (M = Mn, Co, Ni and Cd). Journal of Molecular Structure, 994, 170-178. http:/doi.org/10.1016/j.molstruc.2011.03.014
  • Kartal, Z. (2012). Vibrational spectroscopic investigation on some M(Benzonitrile)2Ni(CN)4 complexes (M = Ni, Zn, Cd and Hg). Brazilian Journal of Physics, 42, 6-13. http:/doi.org/10.1007/s13538-011-0054-x
  • Kartal, Z. & Türk, T. (2021). FT-IR spectroscopic and thermal study of M(1,6-hexanedithiol) Ni(CN)4.2(1,4-dioxane) clathrate(M = Mn, Co, Ni and Cd). Journal of Molecular Structure, 1014, 74-80. http:/doi.org/10.1016/j.molstruc.2012.01.031
  • Kartal, Z. (2016). Synthesis, spectroscopic, thermal and structural properties of [M(3-aminopyridine)2Ni(μ-CN)2(CN)2]n [M(II) = Co and Cu] heteropolynuclear cyano-bridged complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 152, 577–583. http:/doi.org/10.1016/j.saa.2014.12.117
  • Kartal, Z. & Yavuz, A. (2018). The synthesis and the spectroscopic, thermal, and structural properties of the M2[(fumarate)Ni(CN)4].2(1,4-dioxane) clathrate (M = Co, Ni, Cd and Hg). Journal of Molecular Structure, 1155, 171-183. http:/doi.org/ 10.1016/j.molstruc.2017.10.107
  • Kartal, Z., Şahin, O. & Yavuz, A. (2018). The synthesis of two new Hofmann-type M(3-aminopyridine)2Ni(CN)4 [M = Zn(II)and Cd(II)] complexes and the characterization of their crystal structure by various spectroscopic methods. Journal of Molecular Structure, 1171, 578-586. http:/doi.org/10.1016/j.molstruc.2018.06.042
  • Kartal, Z. & Şahin, O. (2021). Synthesis, spectroscopic, thermal, crystal structure prop- erties and characterization of new Hofmann-type-like clathrates with 4-aminopyridine and water. Turkish Journal of Chemistry, 45, 616–633. http:/doi.org/10.3906/ kim- 2011- 29
  • Kartal, Z. & Şahin, O. (2021). Synthesis, spectroscopic, thermal, crystal structure prop- erties, and characterization of new Hofmann-Td-type complexes with 3- aminopyridine, Turkish. Journal of Chemistry, 45, 942–955. http:/doi.org/10.3906/kim-2101-32
  • Kartal, Z., Şahin, O. & Yavuz, A. (2019). Synthesis of Hofmann-type Zn(H2O)2Ni(CN)4.nG (G = water and 1,4-dioxane) clathrates and the determination of their structural properties by various spectroscopic methods, Turkish Journal of Chemistry, 43(6), 1608–1621. http:/doi.org/10.3906/kim-1906-26
  • Kartal, Z. & Şahin, O. (2022). Synthesis of two Hofmann type and Hofmann-type-like compounds in crystal form from 4-aminopyridine and their characterizations by various methods. Journal of Molecular Structure, 1252, 132088. https://doi.org/10.1016/j.molstruc.2021.132088.
  • Nakamoto, K. (2009). Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Applications in coordination, organometallic, and bioinorganic chemistry, John Wiley and Sons, Hoboken, New Jersey.
  • Smékal, Z., Císařová, I. & Mroziński, J. (2001). Cyano-bridged bimetallic complexes of copper(II) with tetracyanonickelate(II). Crystal structure of [Cu(dpt)Ni(CN)4]. Polyhedron, 20, 3301–3306.http:/ doi.org/10.1016/S0277-5387(01)00942-1
  • Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica, A64,112-122. https://doi.org/10.1107/S0108767307043930.
  • Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 3-8. http://dx.doi.org/10.1107/S2053229614024218
  • APEX2, Bruker AXS Inc. Madison Wisconsin USA (2013).
  • Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). Mercury 4.0: from visualization to analysis, design and prediction. Journal of Applied. Crystalography, 53, 226-235. https://doi.org/10.1107/S1600576719014092
  • Şenocak, A., Karadağ, A., Soylu, M. S. & Andac, O. (2015). Two novel cyanido-bridged polymeric complexes with suspension bridge type connections and a series of related complex salts: crystallographic and thermal characterizations. New Journal of Chemistry, 39(5), 3675-3686. https://doi.org/10.1039/C5NJ00071H
  • Kurkcuoglu, G. S., Hokelek, T., Aksel, M., Yesilel, O. Z. & Dal, H. (2011). Cyano-Bridged Heteropolynuclear Ni(II), Cu(II) and Cd(II) Complexes, [M(deten) Ni(μ-CN) (CN) ]. Journal of Inorganic and Organometallic Polymers and Materials, 21(3), 602-610. http:/doi.org/10.1007/s10904-011-9494-6
  • Kürkçüoğlu, G. S., Sayin, E. & Şahin, O. (2015). Cyanide bridged hetero-metallic polymeric complexes: Syntheses, vibrational spectra, thermal analyses and crystal structures of complexes [M(1,2-dmi)2 Ni(μ-CN)4]n (M = Zn (II) and Cd (II)). Journal of Molecular Structure, 1101, 82-90. https://doi.org/10.1016/j.molstruc.2015.08.013
  • Kürkçüoğlu, G. S., Hökelek, T., Yesilel, O. Z. & Aksay, S. (2008). Synthesis, IR spectrum, thermal property and crystal structure of cyano-bridged heteronuclear polymeric complex, [Cd(teta)Ni(mu-CN)(2)(CN)(2)] center dot 2H(2)O. Structural Chemistry, 19(3), 493-499. http:/doi.org/ 10.1007/s11224-008-9309-8
  • Paharova, J., Cernak, J., Zak, Z. & Marek, J. (2007). Use of multi-N-donor ligands for preparation of organic–inorganic hybrid materials: Crystal structures of ionic [M(aepn)2][Ni(CN)4]·H2O and polymeric M(aepn)Ni(CN)4 (M=Zn(II), Cd(II); aepn=N-(2-aminoethyl)-1,3-propanediamine). Journal of Molecular Structure, 842, 117-124. http:/doi.org/10.1016/j.molstruc.2006.12.022
  • Collins, J. B., Schleyer, P. v. R., Binkley, J. S. & Pople, J. A. (1976) Self-Consistent molecular orbital methods. 17. Geometries and binding energies of second-row molecules. A comparison of three basis sets. Journal of Chemical Physics, 64, 5142-5151. http:/doi.org/10.1063/1.432189
  • Frisch,MJ, Trucks,GW, Schlegel,HB, Scuseria,GE, Robb,MA, Cheeseman,JR, Montgomery,JrJA, Vreven,T, Kudin, KN, Burant,JC, Millam,JM, Iyengar,SS, Tomasi,J, Barone,V, Mennucci, B, Cossi, M, Scalmani, G, Rega, N, Petersson, GA, Nakatsuji, H, Hada, M, Ehara, M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai,H, Klene,M, Li, X, Knox,JE, Hratchian,HP, Cross,JB, Bakken,V, Adamo,C, Jaramillo,J, Gomperts,R, Stratmann,RE, Yazyev,O, Austin,AJ, Cammi,R, Pomelli,C, Ochterski,JW, Ayala,PY, Morokuma,K, Voth,GA, Salvador,P, Dannenberg,JJ, Zakrzewski,VG, Dapprich,S, Daniels,AD, Strain,MC, Farkas,O, Malick, DK, Rabuck,AD, Raghavachari,K, Foresman,JB, Ortiz,JV, Cui,Q, Baboul,AG, Clifford,S, Cioslowski,J, Stefanov,BB, Liu,G, Liashenko,A, Piskorz,P, Komaromi,I, Martin,RL, Fox,DJ, Keith,T, Al-Laham,MA, Peng,CY, Nanayakkara,A, Challacombe,M, Gill,PMW, Johnson,B, Chen,W, Wong,MW, Gonzalez,C. & Pople,JA. (2004). Gaussian 03 Revision D.01. Gaussian, Inc., Wallingford CT.
  • Dennington, R., Keith, T. & Millam, J. (2007). Gauss View, Version 4.1.2. Semichem Inc., Shawnee Mission.
  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, 5648–5652. http:/doi.org/10.1063/1.464913
  • Lee, C., Yang, W. & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789. http:/doi.org/ 10.1103/PhysRevB.37.785
  • Peng, C., Ayala, P. Y., Schlegel, H. B. & Frisch, M. J. (1996). Using redundant internal coordinates to optimize equilibrium geometries and transition states. Journal of Computaional Chemistry, 17, 49–56.
  • Stephens, P. J., Devlin, F. J., Chablowski, C. F. & Frisch, M. J. (1994). Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. Journal of Physical Chemistry, 98, 11623–11627. https://doi.org/10.1021/j100096a001
  • Pearson, P. G. (2005). Chemical hardness and density functional theory. Journal of Chemical Sciences, 117, 5, 369-377. https://doi.org/10.1007/BF02708340
  • Parr, R. G. & Pearson, R. G. (1983). Absolute hardness: companion parameter to absolute electronegativity. Journal of American Chemical Society, 105, 26, 7512-7516. https://doi.org/10.1021/ja00364a005
  • Mebi, C. A. (2011). DFT study on structure, electronic properties, and reactivity of cis-isomers of [(NC5H4-S)2Fe(CO)2]. Journal of Chemical Sciences, 123, 727–731.https://doi.org/10.1007/s12039-011-0131-2
  • Kumar, C. P. & Buddhadev, M. (2003). HSAB principle applied to the time evolution of chemical reactions. Journal of American Chemical Society, 125, 9, 2705-2710. https://doi.org/10.1021/ja0276063
  • Nataraj, A., Balachandran, V. & Karthick, T. (2013). Molecular orbital studies (hardness, chemical potential, electrophilicity, and first electron excitation), vibrational investigation and theoretical NBO analysis of 2-hydroxy-5-bromobenzaldehyde by density functional method. Journal of Molecular Structure, 1031, 221–233. http:/doi.org/10.1016/j.molstruc.2012.09.047
  • Elusta, M. I., Başaran, M. A. & Kandemirli, F. (2019). Theoretical studies on mild steel corrosion inhibition by 5-substituted 1h-tetrazoles in acidic media. International Journal of Electrochemical Science, 14, 2743 – 2756. http:/doi.org/10.20964/2019.03.46
  • Kartal, Z. & Şahin, O. (2022). Synthesis of two Hofmann type and Hofmann-type-like compounds in crystal form from 4-aminopyridine and their characterizations by various methods. Journal of Molecular Structure, 1252, 132088. https://doi.org/10.1016/j.molstruc.2021.132088
  • Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. Journal of Applied Crystalography, 54(3), 1006–1011. http:/doi.org/10.1107/S1600576721002910
  • Praprotnik, M., Janežič, D. & Mavri, J. (2004). Temperature dependence of water vibrational spectrum: a molecular Dynamics simulation study. Journal of Physical Chemistry A, 108, 11056-11062. http://doi.org/10.1021/jp046158d
  • Carey, D. M. & Korenowski, G. M. (1998). Measurement of the Raman spectrum of liquid water. Journal of Chemical Physics, 108(7), 2669-2675. http://doi.org/10.1063/1.475659
  • Zhang, C., Khaliullin, R. Z, Bovi, D., Guidoni, L. & Kühne, T. D. (2013). Vibrational signature of water molecules in asymmetric hydrogen bonding environments. Journal of Physical Chemistry Letters, 4(19), 3245-3250. http://doi.org/10.1021/jz401321x
  • Sharpe, A. G. (1976). The Chemistry of Cyano Complexes of the Transition Metals, Academic Press, London.
  • McCullough, R. L., Jones, L. H. & Crosby, G. A. (1960). An analysis of the vibrational spectrum of the tetracyanonickelate(II) ion in a crystal lattice, Spectrochimica Acta, 16(8), 929–944. https://doi.org/10.1016/0371-1951(60)80057-4
There are 50 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Research Articles
Authors

Zeki Kartal 0000-0001-9739-0858

Zarife Sibel Şahin 0000-0003-2745-7871

Project Number 2017/25
Publication Date June 29, 2024
Submission Date October 4, 2023
Published in Issue Year 2024 Volume: 9 Issue: 1

Cite

APA Kartal, Z., & Şahin, Z. S. (2024). Crystal Structure and Hirshfeld Surface Analysis of a Heterometallic Hofmann-Type-Like Compound. Sinop Üniversitesi Fen Bilimleri Dergisi, 9(1), 72-95. https://doi.org/10.33484/sinopfbd.1370598