Research Article
BibTex RIS Cite

EFFECT OF PARTICULATE OF MILD STEEL AND ALUMINIUM DROSS ON THE PHYSICAL AND MECHANICAL PROPERTIES OF EPOXY RESIN MATRIX COMPOSITES

Year 2022, Volume: 5 Issue: 1, 1 - 8, 28.06.2022

Abstract

Particles reinforced polymer matrix composites were developed by mould casting method. 5 – 25 weight percent of particulate of mild steel and aluminium dross, which are metal waste were applied as reinforcement for the production of epoxy resin matrix composites. The unreinforced epoxy resin and composite specimens were subjected to microstructural, water absorption, tensile, Young’s modulus, impact, and hardness tests. The results showed that the hybrid specimen demonstrated the lowest water absorption of 0.01 %, highest tensile strength, elastic modulus, and impact energy of 81.05 MPa, 600 MPa and 17.24 J respectively at 15 wt. % filler content. The results indicated that the hybrid polymer matrix composite has potential for applications where low strength is required.

References

  • Rathod, V.T., Kumar, J. S., Jain, A. (2017). Polymer and ceramic nanocomposites for aerospace applications. Applied Nanoscience vol. 7, p. 519-548.
  • Kesarwani S. (2017). Polymer composites in aviation sector: a brief review article. International Journal of Engineering Research & Technology (IJERT) vol. 6, no. 6, p. 518-525.
  • Bello, S.A., Agunsoye, J.O., Hassan, S.B., Kana, M.G., Raheem, I.A. (2015). Epoxy resin based composites, mechanical and tribological properties: a review. Tribology in Industry vol. 37, no. 4, p. 500-524.
  • Jones, W.E., Chiguma, J., Johnson, E., Pachamuthu, A., Santos, D. (2010). Electrically and thermally conducting nanocomposites for electronic applications. Material vol. 3, p. 1478-1496.
  • Goyanes, S., Rubiolo, G., Marzocca, A., Salgueiro, W., Somoza, A. (2003). Yield and internal stresses in aluminum filled epoxy resin: a compression test and positron annihilation analysis. Polymer vol. 44, no. 11, p. 3193-3199.
  • Tilbrook, M.T., Moon, R. J., Hoffman, M. (2005). Mechanical properties of alumina-epoxy composites with an interpenetrating network structure. Materials Science and Engineering A vol. 393, no. 1, p. 170-178.
  • Al-Namie, I., Ibrahim, A.A., Hassan, M.F. (2011). Study of the mechanical properties of epoxy resin reinforced with silica (quartz) and alumina particles. The Iraqi Journal for Mechanical and Material Engineering vol. 11, no. 3, p. 486-506.
  • Imoisili, P.E., Ibegbulam, C.M., Adejugbe, T.I. (2012). Effect of concentration of coconut shell ash on the tensile properties of epoxy composites. Pacific Journal of Science and Technology vol. 13, no. 1, p. 463-468.
  • Oladele, I.O., Ishola, B.A. (2016). Development of bone particulate reinforced epoxy composite for biomedical applications. Journal of Applied Biotechnology and Bioengineering vol. 1, no. 1, p. 35-40.
  • Mat-Shayuti, M.S., Abdullah, M.Z., Megat-Yusoff, P.S.M. (2013). Water absorption properties and morphology of polypropylene/polycarbonate/polypropylene-graft-maleic anhydride blends. Asian Journal of Scientific Research vol. 6, no. 2, p. 167-176.
  • Groover, M.P. (2002). Fundamentals of Modern Manufacturing. 2nd Ed., John Wiley & Sons, Inc. New Jersey, USA.
  • Pantyukhov, P., Kolesnikova, N., Anatoly, P. (2016). Preparation, structure, and properties of biocomposites based on low-density polyethylene and lignocellulosic fillers. Polymer Composites vol. 37, p. 1461-1472.[13] H'ng, P.S., Lee, A.N., Hang, C.M., Lee, S.H., Khalina, A., Paridah, M.T. (2011). Biological durability of injection moulded wood plastic composite boards. Journal of Applied Science vol. 11, no. 3, p. 384-388.
  • H'ng, P.S., Lee, A.N., Hang, C.M., Lee, S.H., Khalina, A., Paridah, M.T. (2011). Biological durability of injection moulded wood plastic composite boards. Journal of Applied Science vol. 11, no. 3, p. 384-388.
  • Renner, K., Yang, M.S., Móczó, J., Choi, H.J., Pukánszky, B. (2005). Analysis of the debonding process in polypropylene model composites. European Polymer Journal vol. 41, p. 2520-2529.
  • Durowaye, S., Bolasodun, B., Kuforiji, C., Odina, K. (2019). Effects of alumınıum dross and iron fılıngs partıculates on the mechanıcal propertıes of hybrıd thermoplastıc (nylon) matrıx composıtes. Usak University Journal of Engineering Sciences (UUJES) vol. 2, no. 2, p. 86-99.
  • Rutz, B.H. (2014). Improvement of mechanical properties of polymeric composites, Ph.D. Thesis, Department of Chemical Engineering, University of Washington, USA.
  • Aigbodion, V.S., Agunsoye, J.O., Kalu, V., Asuke, F., Ola, S. (2010). Microstructure and mechanical properties of ceramic composites. Journal of Minerals & Materials Characterization & Engineering vol. 9, no. 6, p. 527-538.
Year 2022, Volume: 5 Issue: 1, 1 - 8, 28.06.2022

Abstract

References

  • Rathod, V.T., Kumar, J. S., Jain, A. (2017). Polymer and ceramic nanocomposites for aerospace applications. Applied Nanoscience vol. 7, p. 519-548.
  • Kesarwani S. (2017). Polymer composites in aviation sector: a brief review article. International Journal of Engineering Research & Technology (IJERT) vol. 6, no. 6, p. 518-525.
  • Bello, S.A., Agunsoye, J.O., Hassan, S.B., Kana, M.G., Raheem, I.A. (2015). Epoxy resin based composites, mechanical and tribological properties: a review. Tribology in Industry vol. 37, no. 4, p. 500-524.
  • Jones, W.E., Chiguma, J., Johnson, E., Pachamuthu, A., Santos, D. (2010). Electrically and thermally conducting nanocomposites for electronic applications. Material vol. 3, p. 1478-1496.
  • Goyanes, S., Rubiolo, G., Marzocca, A., Salgueiro, W., Somoza, A. (2003). Yield and internal stresses in aluminum filled epoxy resin: a compression test and positron annihilation analysis. Polymer vol. 44, no. 11, p. 3193-3199.
  • Tilbrook, M.T., Moon, R. J., Hoffman, M. (2005). Mechanical properties of alumina-epoxy composites with an interpenetrating network structure. Materials Science and Engineering A vol. 393, no. 1, p. 170-178.
  • Al-Namie, I., Ibrahim, A.A., Hassan, M.F. (2011). Study of the mechanical properties of epoxy resin reinforced with silica (quartz) and alumina particles. The Iraqi Journal for Mechanical and Material Engineering vol. 11, no. 3, p. 486-506.
  • Imoisili, P.E., Ibegbulam, C.M., Adejugbe, T.I. (2012). Effect of concentration of coconut shell ash on the tensile properties of epoxy composites. Pacific Journal of Science and Technology vol. 13, no. 1, p. 463-468.
  • Oladele, I.O., Ishola, B.A. (2016). Development of bone particulate reinforced epoxy composite for biomedical applications. Journal of Applied Biotechnology and Bioengineering vol. 1, no. 1, p. 35-40.
  • Mat-Shayuti, M.S., Abdullah, M.Z., Megat-Yusoff, P.S.M. (2013). Water absorption properties and morphology of polypropylene/polycarbonate/polypropylene-graft-maleic anhydride blends. Asian Journal of Scientific Research vol. 6, no. 2, p. 167-176.
  • Groover, M.P. (2002). Fundamentals of Modern Manufacturing. 2nd Ed., John Wiley & Sons, Inc. New Jersey, USA.
  • Pantyukhov, P., Kolesnikova, N., Anatoly, P. (2016). Preparation, structure, and properties of biocomposites based on low-density polyethylene and lignocellulosic fillers. Polymer Composites vol. 37, p. 1461-1472.[13] H'ng, P.S., Lee, A.N., Hang, C.M., Lee, S.H., Khalina, A., Paridah, M.T. (2011). Biological durability of injection moulded wood plastic composite boards. Journal of Applied Science vol. 11, no. 3, p. 384-388.
  • H'ng, P.S., Lee, A.N., Hang, C.M., Lee, S.H., Khalina, A., Paridah, M.T. (2011). Biological durability of injection moulded wood plastic composite boards. Journal of Applied Science vol. 11, no. 3, p. 384-388.
  • Renner, K., Yang, M.S., Móczó, J., Choi, H.J., Pukánszky, B. (2005). Analysis of the debonding process in polypropylene model composites. European Polymer Journal vol. 41, p. 2520-2529.
  • Durowaye, S., Bolasodun, B., Kuforiji, C., Odina, K. (2019). Effects of alumınıum dross and iron fılıngs partıculates on the mechanıcal propertıes of hybrıd thermoplastıc (nylon) matrıx composıtes. Usak University Journal of Engineering Sciences (UUJES) vol. 2, no. 2, p. 86-99.
  • Rutz, B.H. (2014). Improvement of mechanical properties of polymeric composites, Ph.D. Thesis, Department of Chemical Engineering, University of Washington, USA.
  • Aigbodion, V.S., Agunsoye, J.O., Kalu, V., Asuke, F., Ola, S. (2010). Microstructure and mechanical properties of ceramic composites. Journal of Minerals & Materials Characterization & Engineering vol. 9, no. 6, p. 527-538.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Original Research Articles
Authors

Stephen Durowaye 0000-0003-4787-5675

Diana Kanu 0000-0002-0487-1036

Oluwatomisin Awotunde 0000-0001-9491-4169

Samuel Alao 0000-0002-5341-291X

Publication Date June 28, 2022
Acceptance Date April 5, 2022
Published in Issue Year 2022 Volume: 5 Issue: 1

Cite

APA Durowaye, S., Kanu, D., Awotunde, O., Alao, S. (2022). EFFECT OF PARTICULATE OF MILD STEEL AND ALUMINIUM DROSS ON THE PHYSICAL AND MECHANICAL PROPERTIES OF EPOXY RESIN MATRIX COMPOSITES. Scientific Journal of Mehmet Akif Ersoy University, 5(1), 1-8.