Koroner Arter Baypas Greft Operasyonu ile Antioksidan Olarak Seruloplazminin Enzimatik Aktivitesi Arasındaki İlişki
Year 2021,
Volume: 11 Issue: 1, 61 - 66, 22.03.2021
Özgür Altınbaş
,
Abdullah Tuncay Demiryürek
,
Mehmet Salih Aydın
,
Aydemir Koçarslan
,
Ata Ecevit
,
Ilker Mercan
,
Abdussemet Hazar
,
Erdal Ege
Abstract
Amaç: Seruloplazmin, kanda bakır taşıyan başlıca proteindir ve demir metabolizmasında da rol oynar. Ayrıca antioksidan aktivitesi birçok çalışmada gösterilmiştir. Bu çalışmada koroner arter baypas greft operasyonu ile seruloplazminin enzimatik aktivite düzeyleri arasındaki ilişkiyi araştırdık.
Gereç ve Yöntemler: Çalışmaya koroner arter baypas greft operasyonu geçiren 120 hasta dahil edildi. Periferik kan örnekleri ameliyat öncesi, ameliyat sonrası - kardiyopulmoner baypas öncesi ve sonrası-, ameliyat sonrası 4. saat, 3. gün ve 5. gün alındı. Koroner sinüsten de kardiyopulmoner baypas öncesi ve sonrası kan örnekleri alındı. Seruloplazmin düzeylerinin enzimatik aktivitesi Erel yöntemi ile ölçüldü.
Bulgular: Kardiyopulmoner baypas sonrası seruloplazmin düzeylerinin enzimatik aktivitesinde kademeli bir azalma oldu. Postoperatif 4. saat ve 1. gün periferden alınan kan örneklerinde azalma istatistiksel olarak anlamlıydı (p = 0,025). Aktiviteler sırasıyla postoperatif 3. ve 5. günlerde arttı. Koroner sinüs kan örneklerine göre de, kardiyopulmoner baypas sonrası seruloplazmin enzimatik aktivitesinde önemli bir azalma vardı (p = 0.035).
Sonuç: Çalışmamız, seruloplazmin enzimatik aktivitesinin preoperatif, peroperatif ve postoperatif düzeylerinde önemli farklılıklar gösterdi. Muhtemelen oksidan aktiviteye yanıt olarak tüketime bağlı olan postoperatif 3. gündeki azalma, kardiyovasküler baypasın oksidatif stresi önemli ölçüde artırdığını göstermiştir. Seruloplazmin enzimatik aktivitesi, kardiyopulmoner baypas ile ilişkili enflamatuar ve oksidatif stresin tepkisini yansıtan parametrelerden biri olabilir.
References
- 1. 1. Kurban S, Mehmetoglu I, Ege E. Effect of preoperative atorvastatin therapy on paraoxonase activity and oxidative stress after coronary artery bypass grafting. Perfusion 2009;24(4):271-76.
- 2. Jean-Jacques G, Gaelle C, Olivier G, et al. In High-Risk Patients, Combination of Antiinflammatory Procedures During Cardiopulmonary Bypass can Reduce Incidences of Inflammation and Oxidative Stress. J Cardiovasc Pharm 2007;49(1):39-45.
- 3. Gurol G, Aslan A. Lipid peroxidation and antioxidant enzymes. Sakaryamj 2013; 3(1):5-7
- 4. Hammadh M, Fan Y, Wu Y, Hazen SL, Tang WW. Prognostic Value of Elevated Serum Ceruloplasmin Levels in Patients with Heart Failure. J Card Fail 2014;20(12): 946-52.
- 5. Leong JY, van der Merwe J, Pepe S, et al. Perioperative Metabolic Therapy Improves Redox Status and Outcomes in Cardiac Surgery Patients: a randomized trial. Heart Lung Circ 2010;19(10):584-91.
- 6. Buyukhatıpoglu H, Sezen Y, Yildiz A, et al. Effects of Statin Use on Total Oxidant and Anti-oxidant Capacity and Ceruloplasmin Activity. Clin Invest Med 2010;33(5): 313-20.
- 7. Sarkar A, Dash S, Barik BK, et al. Copper and Ceruloplasmin Levels In Relation to Total Thiols And Gst in Type 2 Diabetes Mellitus Patients. Ind J Clin Biochem 2010;25(1):74-76.
- 8. Patti MC, Cutone A, Polticelli F, et al. The Ferro-portin-ceruloplasmin System and the Mammalian Iron Homeostasis Machine: regulatory pathways and the role of lactoferrin. BioMetals 2018;31(5):399-414.
- 9. Gocmen AY, Sahin E, Semiz E, Gumuslu S. Is Elevated Serum Ceruloplasmin Level Associated with Increased Risk of Coronary Artery Disease? Can J Cardiol 2008;24(3):209-12.
- 10. Erel O. Automated Measurement of Serum Ferroxidase Activity. Clin Chem 1998;44(2):2313–19.
- 11. Neselioglu S, Ergin M, Erel O. A New Kinetic, Automated Assay to Determine the Ferroxidase Activity of Ceruloplasmin. Anal Sci 2017;33(12):1339-44.
- 12. Ata EC, Dereli Y, Durgut K, Ozpinar C. The Effect of Lidocaine Enriched Cardioplegia on Myocardial Ischemia Reperfusion Injury. JCAM 2016;7(3):191-96.
- 13. Mumby S, Chaturvedi R, Brierley J, Lincoln C, Petros A, Redington A, Gutteridge JM. Antioxidant Protection against Iron Toxicity: plasma changes during cardiopulmonary bypass in neonates, infants, and children. Free Radic Res 1999;31(2):141-48.
- 14. Jeremy JY, Shukla N, Angelini GD, et al. Sustained Increases of Plasma Homocysteine, Copper, and Serum Ceruloplasmin after Coronary Artery Bypass Grafting. Ann Thorac Surg 2002;74(5):1553-37.
- 15. Lull ME, Carkaci-Salli N, Freeman WM, et al. Plasma Biomarkers in Pediatric Patients Undergoing Cardiopulmonary Bypass. Pediatr Res 2008;63(6):638-44.
- 16. Melnikov P, Zanoni LZ, Poppi NR. Copper and Ceruloplasmin in Children Undergoing Heart Surgery with Cardiopulmonary Bypass. Biol Trace Elem Res 2009;129(1-3):99-106.
- 17. Hepponstall M, Ignjatovic V, Binos S, et al. Cardiopulmonary Bypass Changes the Plasma Proteome in Children Undergoing Tetralogy of Fallot Repair. Perfusion 2015;30(7):556-64.
Relationship Between the Coronary Artery Bypass Graft Operation and the Levels of Ceruloplasmin Enzymatic Activity as an Antioxidant
Year 2021,
Volume: 11 Issue: 1, 61 - 66, 22.03.2021
Özgür Altınbaş
,
Abdullah Tuncay Demiryürek
,
Mehmet Salih Aydın
,
Aydemir Koçarslan
,
Ata Ecevit
,
Ilker Mercan
,
Abdussemet Hazar
,
Erdal Ege
Abstract
Objective: Ceruloplasmin is the major copper-carrying protein in the blood, and in addition plays a role in iron metabolism. Moreover, its antioxidant activity was showed in several studies. In this study, we investigated the relationship between coronary artery bypass graft operation and the levels of ceruloplasmin enzymatic activity.
Materials and Methods: The study included 120 patients who underwent coronary artery bypass graft operation. Peripheral blood samples were taken preoperatively, peroperatively –before and after cardiopulmonary bypass-, at postoperative 4th hour, 3rd day and 5th day. Blood samples before and after cardiopulmonary bypass were also taken from the coronary sinus. The enzymatic activity of ceruloplasmin levels were measured by Erel method.
Results: There was a gradual decrease in the enzymatic activity of ceruloplasmin levels after cardiopulmonary bypass. In the postoperative 4th hour and the 1st day, reduction was statistically significant in the blood samples taken peripherally (p=0.025). Activities increased in the postoperative 3rd and 5th days, respectively. According to the coronary sinus blood samples, there were also a significant decrease in the enzymatic activity of ceruloplasmin after cardiopulmonary bypass (p=0,035).
Conclusions: Our study showed significant differences in preoperative, peroperative and postoperative levels of the enzymatic activity of ceruloplasmin. The reduction in postoperative period during the 3rd day which was probably due to consumption as a respond to oxidant activity, demonstrated that cardiovascular bypass significantly increased oxidative stress. Enzymatic activity of the ceruloplasmin may be one of the parameters that reflect the response of inflammatory and oxidative stress associated with cardiopulmonary bypass.
Supporting Institution
yok
References
- 1. 1. Kurban S, Mehmetoglu I, Ege E. Effect of preoperative atorvastatin therapy on paraoxonase activity and oxidative stress after coronary artery bypass grafting. Perfusion 2009;24(4):271-76.
- 2. Jean-Jacques G, Gaelle C, Olivier G, et al. In High-Risk Patients, Combination of Antiinflammatory Procedures During Cardiopulmonary Bypass can Reduce Incidences of Inflammation and Oxidative Stress. J Cardiovasc Pharm 2007;49(1):39-45.
- 3. Gurol G, Aslan A. Lipid peroxidation and antioxidant enzymes. Sakaryamj 2013; 3(1):5-7
- 4. Hammadh M, Fan Y, Wu Y, Hazen SL, Tang WW. Prognostic Value of Elevated Serum Ceruloplasmin Levels in Patients with Heart Failure. J Card Fail 2014;20(12): 946-52.
- 5. Leong JY, van der Merwe J, Pepe S, et al. Perioperative Metabolic Therapy Improves Redox Status and Outcomes in Cardiac Surgery Patients: a randomized trial. Heart Lung Circ 2010;19(10):584-91.
- 6. Buyukhatıpoglu H, Sezen Y, Yildiz A, et al. Effects of Statin Use on Total Oxidant and Anti-oxidant Capacity and Ceruloplasmin Activity. Clin Invest Med 2010;33(5): 313-20.
- 7. Sarkar A, Dash S, Barik BK, et al. Copper and Ceruloplasmin Levels In Relation to Total Thiols And Gst in Type 2 Diabetes Mellitus Patients. Ind J Clin Biochem 2010;25(1):74-76.
- 8. Patti MC, Cutone A, Polticelli F, et al. The Ferro-portin-ceruloplasmin System and the Mammalian Iron Homeostasis Machine: regulatory pathways and the role of lactoferrin. BioMetals 2018;31(5):399-414.
- 9. Gocmen AY, Sahin E, Semiz E, Gumuslu S. Is Elevated Serum Ceruloplasmin Level Associated with Increased Risk of Coronary Artery Disease? Can J Cardiol 2008;24(3):209-12.
- 10. Erel O. Automated Measurement of Serum Ferroxidase Activity. Clin Chem 1998;44(2):2313–19.
- 11. Neselioglu S, Ergin M, Erel O. A New Kinetic, Automated Assay to Determine the Ferroxidase Activity of Ceruloplasmin. Anal Sci 2017;33(12):1339-44.
- 12. Ata EC, Dereli Y, Durgut K, Ozpinar C. The Effect of Lidocaine Enriched Cardioplegia on Myocardial Ischemia Reperfusion Injury. JCAM 2016;7(3):191-96.
- 13. Mumby S, Chaturvedi R, Brierley J, Lincoln C, Petros A, Redington A, Gutteridge JM. Antioxidant Protection against Iron Toxicity: plasma changes during cardiopulmonary bypass in neonates, infants, and children. Free Radic Res 1999;31(2):141-48.
- 14. Jeremy JY, Shukla N, Angelini GD, et al. Sustained Increases of Plasma Homocysteine, Copper, and Serum Ceruloplasmin after Coronary Artery Bypass Grafting. Ann Thorac Surg 2002;74(5):1553-37.
- 15. Lull ME, Carkaci-Salli N, Freeman WM, et al. Plasma Biomarkers in Pediatric Patients Undergoing Cardiopulmonary Bypass. Pediatr Res 2008;63(6):638-44.
- 16. Melnikov P, Zanoni LZ, Poppi NR. Copper and Ceruloplasmin in Children Undergoing Heart Surgery with Cardiopulmonary Bypass. Biol Trace Elem Res 2009;129(1-3):99-106.
- 17. Hepponstall M, Ignjatovic V, Binos S, et al. Cardiopulmonary Bypass Changes the Plasma Proteome in Children Undergoing Tetralogy of Fallot Repair. Perfusion 2015;30(7):556-64.