Research Article
BibTex RIS Cite

Obez Çocuklarda Değişen Serum Kitotriosidaz Aktivitesi ve İrisin Düzeyi

Year 2021, Volume: 11 Issue: 3, 523 - 532, 22.09.2021
https://doi.org/10.31832/smj.882608

Abstract

Amaç: Bu çalışmada obez çocuklar ile sağlıklı çocukların serum kitotriosidaz (ChT) aktivitesi ve irisin düzeylerini araştırmayı karşılaştırmayı amaçladık.
Gereç ve Yöntemler: Çalışmaya 91 obez ve 83 normal kilolu çocuk dahil edildi. Obeziteye sahip çocukların serum ChT aktivitesi ve irisin düzeyleri normal kilolu çocuklarla karşılaştırıldı.
Bulgular: Obez grupta ortalama ChT değeri 1825.332 ± 4804.147 nmol / L / h idi ve kontrol grubuna göre anlamlı derecede yüksekti. Buna karşılık, ortalama irisin seviyesi 2679.663 ± 5473.58 pg / ml, kontrol grubuna göre daha düşüktü. ChT için seçilmiş sürekli değişken modelde cutoff değeri 601, duyarlılık % 31.9, özgüllük % 90.6 ve eğri altında bir alan 0.596 idi. İrisin için cutoff değeri 901,4, duyarlılık % 83,5, özgüllük % 42,4 ve eğri altındaki alan 0,617.
Sonuç: Bu çalışma, obezitesi olan çocuklarda serum ChT aktivitesi ve irisin düzeyinin azaldığını ve ChT'nin irisin düzeyleri ile ilişkisini gösteren ilk çalışmadır.ChT ve irisin'in obezitesi olan çocuklarda metabolik sendromun potansiyel biyobelirteçleri olarak kabul edilmesi gerektiğini savunuyoruz.

Supporting Institution

yok

References

  • 1. Kawasaki M, Arata N, Miyazaki C, ve ark. Obesity and abnormal glucose tolerance in offspring of diabetic mothers: a systematic review and meta-analysis. 2018;13(1):e0190676.
  • 2. Kumar S, Kelly AS. Review of childhood obesity: from epidemiology, etiology, and comorbidities to clinical assessment and treatment. Mayo Clinic Proceedings, 2017: Elsevier:251-65.
  • 3. Oken E, Levitan E, Gillman MJIjoo. Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis. 2008;32(2):201-10.
  • 4. Umer A, Kelley GA, Cottrell LE, Giacobbi P, Innes KE, Lilly CLJBph. Childhood obesity and adult cardiovascular disease risk factors: a systematic review with meta-analysis. 2017;17(1):683.
  • 5. Donoso A, Córdova P, Hevia Juricic MdP, Arriagada D. The obese child in the intensive care unit. Update. 2016. 6. Rajjo T, Mohammed K, Alsawas M, ve ark. Treatment of pediatric obesity: an umbrella systematic review. 2017;102(3):763-75.
  • 7. Trandafir L, Temneanu OJJom, life. Pre and post-natal risk and determination of factors for child obesity. 2016;9(4):386.
  • 8. Winck AD, Heinzmann-Filho JP, Soares RB, Silva JSd, Woszezenki CT, Zanatta LBJRPdP. Effects of obesity on lung volume and capacity in children and adolescents: a systematic review. 2016;34(4):510-7.
  • 9. de Vries MA, Klop B, Janssen HW, Njo TL, Westerman EM, Cabezas MC. Postprandial inflammation: targeting glucose and lipids. Oxidative Stress and Inflammation in Non-communicable Diseases-Molecular Mechanisms and Perspectives in Therapeutics,(ed.). Springer; 2014:161-70.
  • 10. Yudkin JJIJoO. Adipose tissue, insulin action and vascular disease: inflammatory signals. 2003;27(3):S25-S8.
  • 11. Arslan N, Erdur B, Aydin AJIp. Hormones and cytokines in childhood obesity. 2010;47(10):829-39.
  • 12. Calle EE, Kaaks RJNRC. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. 2004;4(8):579-91.
  • 13. Ridker PMJC. High-sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. 2001;103(13):1813-8.
  • 14. Fogarty AW, Glancy C, Jones S, Lewis SA, McKeever TM, Britton JRJTAjocn. A prospective study of weight change and systemic inflammation over 9 y. 2008;87(1):30-5.
  • 15. Saltevo J, Vanhala M, Kautiainen H, Laakso MJD, Research VD. Levels of adiponectin, C-reactive protein and interleukin-1 receptor antagonist are associated with the relative change in body mass index between childhood and adulthood. 2007;4(4):328-31.
  • 16. Artieda M, Cenarro A, Gañán A, ve ark. Serum chitotriosidase activity is increased in subjects with atherosclerosis disease. 2003;23(9):1645-52.
  • 17. Canudas J, Cenarro A, Civeira F, ve ark. Chitotriosidase genotype and serum activity in subjects with combined hyperlipidemia: effect of the lipid-lowering agents, atorvastatin and bezafibrate. 2001;50(4):447-50.
  • 18. Sonmez A, Haymana C, Tapan S, ve ark. Chitotriosidase activity predicts endothelial dysfunction in type-2 diabetes mellitus. 2010;37(3):455-9.
  • 19. Kundak AA, Tascılar ME, Abaci A, ve ark. Serum chitotriosidase activity: is it a new inflammatory marker in obese children? 2012;25(1-2):63-7.
  • 20. Boström P, Wu J, Jedrychowski MP, ve ark. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. 2012;481(7382):463-8.
  • 21. de Onis M. 4.1 The WHO child growth standards. Pediatric Nutrition in Practice,(ed.). Vol 113. Karger Publishers; 2015:278-94.
  • 22. Giraldo P, Cenarro A, Alfonso P, ve ark. Chitotriosidase genotype and plasma activity in patients type 1 Gaucher's disease and their relatives (carriers and non carriers). Haematologica. 2001;86(9):977-84.
  • 23. Hollak CE, van Weely S, van Oers MH, Aerts JM. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. The Journal of clinical investigation. 1994;93(3):1288-92. (doi:10.1172/jci117084).
  • 24. Pastores GM, L. Berglund, and R. J. Desnick. Lipoprotein Metabolism in Type l Gaucher Disease Patients on Enzyme Therapy. Journal of Investigative Medicine. 1996.
  • 25. Eckardt K, Taube A, Eckel JJRiE, Disorders M. Obesity-associated insulin resistance in skeletal muscle: role of lipid accumulation and physical inactivity. 2011;12(3):163-72.
  • 26. Crujeiras AB, Zulet MA, Lopez-Legarrea P, ve ark. Association between circulating irisin levels and the promotion of insulin resistance during the weight maintenance period after a dietary weight-lowering program in obese patients. 2014;63(4):520-31.
  • 27. Stengel A, Hofmann T, Goebel-Stengel M, Elbelt U, Kobelt P, Klapp BFJP. Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity–correlation with body mass index. 2013;39:125-30.
  • 28. Fantuzzi GJJoA, Immunology C. Adipose tissue, adipokines, and inflammation. 2005;115(5):911-9.
  • 29. Dong J, Dong Y, Chen F, Mitch W, Zhang LJIjoo. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues. 2016;40(3):434-42.
  • 30. Shim YS, Kang MJ, Yang S, Hwang ITJEj. Irisin is a biomarker for metabolic syndrome in prepubertal children. 2017:EJ17-0260.

Altered Serum Chitotriosidase Activity and Irisin Level in Obese Children

Year 2021, Volume: 11 Issue: 3, 523 - 532, 22.09.2021
https://doi.org/10.31832/smj.882608

Abstract

Objective:In this study, we aimed to investigate serum chitotriosidase (ChT) activity and irisin levels in children with obesity and compare them to those of healthy counterparts.
Material and Methods: A total of 91 obese and 83 normal-weight children were included in the study. Serum ChT activity and irisin levels of children with obesity were compared to those of normal-weight children.
Results: The mean ChT value in the obese group was 1825.332 ± 4804.147 nmol/L/h and was significantly higher than that in the control group. In contrast, the mean irisin level, 2679.663 ± 5473.58 pg/ml, was lower than that in the control group. The cutoff point of the continuous variable selected in the model for ChT was 601, with 31.9% sensitivity, 90.6% specificity, and an area under the curve of 0.596. The cutoff point for irisin was 901.4, with 83.5% sensitivity, 42.4% specificity, and an area under the curve of 0.617.
Conclusion: This study is the first to show decreased serum both serum ChT activity and irisin level and ChT’s association with irisin levels in children with obesity . We argue that ChT and irisin should be considered potential biomarkers of metabolic syndrome in children with obesity.

References

  • 1. Kawasaki M, Arata N, Miyazaki C, ve ark. Obesity and abnormal glucose tolerance in offspring of diabetic mothers: a systematic review and meta-analysis. 2018;13(1):e0190676.
  • 2. Kumar S, Kelly AS. Review of childhood obesity: from epidemiology, etiology, and comorbidities to clinical assessment and treatment. Mayo Clinic Proceedings, 2017: Elsevier:251-65.
  • 3. Oken E, Levitan E, Gillman MJIjoo. Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis. 2008;32(2):201-10.
  • 4. Umer A, Kelley GA, Cottrell LE, Giacobbi P, Innes KE, Lilly CLJBph. Childhood obesity and adult cardiovascular disease risk factors: a systematic review with meta-analysis. 2017;17(1):683.
  • 5. Donoso A, Córdova P, Hevia Juricic MdP, Arriagada D. The obese child in the intensive care unit. Update. 2016. 6. Rajjo T, Mohammed K, Alsawas M, ve ark. Treatment of pediatric obesity: an umbrella systematic review. 2017;102(3):763-75.
  • 7. Trandafir L, Temneanu OJJom, life. Pre and post-natal risk and determination of factors for child obesity. 2016;9(4):386.
  • 8. Winck AD, Heinzmann-Filho JP, Soares RB, Silva JSd, Woszezenki CT, Zanatta LBJRPdP. Effects of obesity on lung volume and capacity in children and adolescents: a systematic review. 2016;34(4):510-7.
  • 9. de Vries MA, Klop B, Janssen HW, Njo TL, Westerman EM, Cabezas MC. Postprandial inflammation: targeting glucose and lipids. Oxidative Stress and Inflammation in Non-communicable Diseases-Molecular Mechanisms and Perspectives in Therapeutics,(ed.). Springer; 2014:161-70.
  • 10. Yudkin JJIJoO. Adipose tissue, insulin action and vascular disease: inflammatory signals. 2003;27(3):S25-S8.
  • 11. Arslan N, Erdur B, Aydin AJIp. Hormones and cytokines in childhood obesity. 2010;47(10):829-39.
  • 12. Calle EE, Kaaks RJNRC. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. 2004;4(8):579-91.
  • 13. Ridker PMJC. High-sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. 2001;103(13):1813-8.
  • 14. Fogarty AW, Glancy C, Jones S, Lewis SA, McKeever TM, Britton JRJTAjocn. A prospective study of weight change and systemic inflammation over 9 y. 2008;87(1):30-5.
  • 15. Saltevo J, Vanhala M, Kautiainen H, Laakso MJD, Research VD. Levels of adiponectin, C-reactive protein and interleukin-1 receptor antagonist are associated with the relative change in body mass index between childhood and adulthood. 2007;4(4):328-31.
  • 16. Artieda M, Cenarro A, Gañán A, ve ark. Serum chitotriosidase activity is increased in subjects with atherosclerosis disease. 2003;23(9):1645-52.
  • 17. Canudas J, Cenarro A, Civeira F, ve ark. Chitotriosidase genotype and serum activity in subjects with combined hyperlipidemia: effect of the lipid-lowering agents, atorvastatin and bezafibrate. 2001;50(4):447-50.
  • 18. Sonmez A, Haymana C, Tapan S, ve ark. Chitotriosidase activity predicts endothelial dysfunction in type-2 diabetes mellitus. 2010;37(3):455-9.
  • 19. Kundak AA, Tascılar ME, Abaci A, ve ark. Serum chitotriosidase activity: is it a new inflammatory marker in obese children? 2012;25(1-2):63-7.
  • 20. Boström P, Wu J, Jedrychowski MP, ve ark. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. 2012;481(7382):463-8.
  • 21. de Onis M. 4.1 The WHO child growth standards. Pediatric Nutrition in Practice,(ed.). Vol 113. Karger Publishers; 2015:278-94.
  • 22. Giraldo P, Cenarro A, Alfonso P, ve ark. Chitotriosidase genotype and plasma activity in patients type 1 Gaucher's disease and their relatives (carriers and non carriers). Haematologica. 2001;86(9):977-84.
  • 23. Hollak CE, van Weely S, van Oers MH, Aerts JM. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. The Journal of clinical investigation. 1994;93(3):1288-92. (doi:10.1172/jci117084).
  • 24. Pastores GM, L. Berglund, and R. J. Desnick. Lipoprotein Metabolism in Type l Gaucher Disease Patients on Enzyme Therapy. Journal of Investigative Medicine. 1996.
  • 25. Eckardt K, Taube A, Eckel JJRiE, Disorders M. Obesity-associated insulin resistance in skeletal muscle: role of lipid accumulation and physical inactivity. 2011;12(3):163-72.
  • 26. Crujeiras AB, Zulet MA, Lopez-Legarrea P, ve ark. Association between circulating irisin levels and the promotion of insulin resistance during the weight maintenance period after a dietary weight-lowering program in obese patients. 2014;63(4):520-31.
  • 27. Stengel A, Hofmann T, Goebel-Stengel M, Elbelt U, Kobelt P, Klapp BFJP. Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity–correlation with body mass index. 2013;39:125-30.
  • 28. Fantuzzi GJJoA, Immunology C. Adipose tissue, adipokines, and inflammation. 2005;115(5):911-9.
  • 29. Dong J, Dong Y, Chen F, Mitch W, Zhang LJIjoo. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues. 2016;40(3):434-42.
  • 30. Shim YS, Kang MJ, Yang S, Hwang ITJEj. Irisin is a biomarker for metabolic syndrome in prepubertal children. 2017:EJ17-0260.
There are 29 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Ferit Durankuş 0000-0001-5031-1497

Evrim Şenkal This is me 0000-0002-3075-2348

Ramazan Durankuş This is me 0000-0001-6131-9822

Eda Sünnetçi Silistre 0000-0003-0450-0152

Oya Sayın 0000-0003-0879-9091

Nihan Potas 0000-0002-0393-3135

Yakup Albayrak 0000-0002-1926-1695

Publication Date September 22, 2021
Submission Date February 18, 2021
Published in Issue Year 2021 Volume: 11 Issue: 3

Cite

AMA Durankuş F, Şenkal E, Durankuş R, Sünnetçi Silistre E, Sayın O, Potas N, Albayrak Y. Altered Serum Chitotriosidase Activity and Irisin Level in Obese Children. Sakarya Tıp Dergisi. September 2021;11(3):523-532. doi:10.31832/smj.882608

30703

The published articles in SMJ are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.