Research Article
BibTex RIS Cite

Exploration of the Effect of Carbon Fiber Ratio and Dimensions on Electrical Conductivity in Mortars

Year 2022, Volume: 5 Issue: 2, 199 - 209, 31.12.2022
https://doi.org/10.51764/smutgd.1122779

Abstract

This study was carried out on Class F and C fly ash reinforced, carbon fiber added mortar samples as a substitute for PÇ42,5 cement. Carbon fiber was added in different sizes at rates of 0.5%, 1%, and 3% in order to investigate the effects of the size and ratio of carbon fiber on electrical conductivity. 33 different series were formed such as obtained Class F; without fly ash 10%, 20% and Class C; without fly ash, 10%, 20% with samples without carbon fiber and with carbon fiber having dimensions 5 mm and 10 mm. The water/cement ratio was prepared to take the value of 22-23cm in the flow table test.,A viscosity regulator of 0.1% of the fine material was used in order to ensure homogeneous distribution of carbon fiber in the mortar. 3 samples were prepared for each series in order to reduce the margin of error. Electrical conductivity, compressive and tensile strength tests were applied to the oven dry and naturally moist conditions of the samples that completed their 7, 28 and 56 days curing periods. Increasing the carbon fiber size increased the tensile strengths and increasing the carbon fiber ratio increased the tensile strengths. It has been observed that carbon fiber increases the electrical conductivity, but the conductivity decreases depending on time, and as the sizes and proportions of the carbon fiber fibers increase, the compressive strength decreases due to the void effect in the mortar, while the compressive strength increases with the increase in the fly ash ratio. The microstructure and carbon fiber distribution of the samples were examined using SEM (Scanning Electron Microscopy) and it was seen that the carbon fiber distribution was in a way that supports the electrical conductivity measurement. The study allowed the size and proportion effect of carbon fiber in mortars to be compared with C and Class F reinforced mortar samples.

References

  • [1] Çağlar H., Çağlar A., Can Ö., (2020), Graphene Additives Effect on Mechanical and Structural Characterization Properties of Polyvinyl Alcohol (PVA) and Boron Based Cement Mortar, Science of Advanced Materials, 12(2), pp. 269-275.
  • [2] Aldakshe AMA., Çağlar H., Çağlar A., Avan Ç. (2020). The Investigation of Use as Aggregate in Lightweight Concrete Production of Boron Wastes of Eskişehir-Kirka Region, Civil Engineering Journal 7(6), 1328-1335
  • [3] Tezel H., Çağlar H., Çağlar A., Can Ö., Çimen S. (2020). Effects of Boric Acid Additive to Pumice Aggregate Lightweight Concrete Properties, International Journal of Scientific and Technological Research 6(9), 1-10.
  • [4] Palta E., Çağlar H., Çağlar A. (2020), The effect of borıc acıd on mechanical properties and structural characterization of self-compacting concrete, Türk Doğa ve Fen Dergisi, 9, 160-166.
  • [5] Çağlar H., Kale M.O., Çağlar A., Apay A.C., Çimen S. (2021) Improving of Lightweight Concrete Properties Produced With Pumice Aggregate Of Nevşehir Region With Fly Ash Substitution, Academic Platform Journal of Engineering and Science, 9(2), 302-308.
  • [6] Çimen S., Çağlar H., Çağlar A., Can Ö. (2020), Effect of Boron Wastes on the Engineering Properties of Perlite Based Brick, Türk Doğa ve Fen Dergisi, 9(2), 50-56.
  • [7] Kaya, G., Turan, S., 2004, The Evaluation of Blast Furnace Slag in the Production of Products with High Added Value in the Ceramic Industry, Journal of Engineers and Machines, Vol: 45, Issue: 536, pp. 48-60, September 2004.
  • [8] HEAL. 2018. Lignite coal: health effects and advice from the health sector. HEAL: Retrieved from https://www.env-health.org/wp-content/uploads/2018/12/HEAL-Lignite-Briefing-TRweb.pdf
  • [9] TÜİK. (2017, December 18). News Bulletins-Thermal Power Plant Water, Wastewater and Waste Statistics. Retrieved on May 20, 2019 from TURKSTAT: http://tuik.gov.tr/OncekiHBArama.do.
  • [10] Çağlar H., Çağlar A. (2019). Research of Physical and Mechanical Properties of Blended Bricks with Fly Ash Based, Blast Furnace Slag Addition, International Journal of Research –Granthaalayah, 7(1), pp. 126-136.
  • [11] Çağlar, A. , Çağlar, H., Ahıskalı, A., Çimen, S., (2021), The Effect Of Rice Husk Ash On Thermal Properties Of Blend Brick. Mas 14. International European Conference On Mathematics, Engineering, Natural&Medical Sciences . March 26-28,2021 Page 126. Széchenyi Istvan University, Hungary.
  • [12] Dolch, W.L.,Diamond, S., Durability of concrete, 1995. Part 39 of Civil Engineering Handbook, Editor-in-chief, W.F. Chen. Boca Raton: CRC.
  • [13] Demirel, B., (2006). Examination of Stress and Temperature Behaviors of Smart Lightweight Concrete, PhD Thesis, Fırat University, Institute of Science and Technology, Elazig.
  • [14] Chung, D.D.L. and Chen, P., (1993).Carbon Fiber ReinforcedConcreteFor Smart StructuresCapable of Non-Destructive Flaw Detection, Smart Mater. Struct.,2, 22-30.
  • [15] Chen, P. and Chung, D.D.L., (1993). Carbon Fiber Reinforced Concrete as an Electrical Contact Material for Smart Structures, Smart Mater. Struct., 2,181-188.
  • [16] TS EN 197-1/Mart 2002. Cement - Part 1: General Cements - Composition, Properties and Compliance Criteria.
  • [17] TS EN 196-1 TS EN 196-1 Cement Test Methods - Part 1: Determination of Strength, TSE, (2002).
  • [18] TÇMB/AR-GE/Y96.1 Turkey Cement-Concrete Researcher Inventory (1996)
  • [19] TS EN 12350-5, (2010). Concrete - Fresh Concrete Tests - Part 5: Spreading Table Test, Turkish Standards Institute, Ankara, Turkey.
  • [20] Giatec Scientific, www.giatec.ca
  • [21] ASTM C 1760 Standard Test Method for Bulk Electrical Conductivity of Hardened Concrete (Withdrawn 2021) [22] TS EN 12390-5 Concrete - Hardened Concrete Tests - Part 4: Determination of Tensile Strength in Bending of Test Samples, Ankara

Exploration of the Effect of Carbon Fiber Ratio and Dimensions on Electrical Conductivity in Mortars

Year 2022, Volume: 5 Issue: 2, 199 - 209, 31.12.2022
https://doi.org/10.51764/smutgd.1122779

Abstract

Bu çalışma, PÇ42,5 çimentosu yerine F ve C sınıfı uçucu kül takviyeli, karbon fiber katkılı harç numuneleri üzerinde yapılmıştır. Karbon fiber boyutunun ve oranının elektrik iletkenliği üzerindeki etkilerini araştırmak için farklı boyutlarda %0,5, %1 ve %3 oranlarında karbon fiber eklenmiştir. Elde edilen Class F gibi 33 farklı seri oluşturulmuştur; uçucu kül içermeyen %10, %20 ve C Sınıfı; uçucu külsüz, %10, %20 karbon elyafsız numunelerde ve 5 mm ve 10 mm boyutlarında karbon elyaflı. Akış tablosu testinde su/çimento oranı 22-23cm değerini alacak şekilde hazırlandı. Karbon fiberin harç içinde homojen dağılımını sağlamak için ince malzemenin %0,1'lik bir viskozite düzenleyicisi kullanıldı. Hata payını azaltmak için her seri için 3 numune hazırlanmıştır. 7, 28 ve 56 günlük kür sürelerini tamamlayan numunelere etüv kurusu ve doğal nemli koşullarda elektriksel iletkenlik, basınç ve çekme dayanımı testleri uygulanmıştır. Karbon lif boyutunun artması çekme dayanımlarını, karbon lif oranının artması ise çekme dayanımlarını artırmıştır. Karbon fiberin elektriksel iletkenliği arttırdığı ancak zamana bağlı olarak iletkenliğin azaldığı, karbon fiber fiberlerin boyutları ve oranları arttıkça harç içerisindeki boşluk etkisinden dolayı basınç dayanımının düştüğü, basınç dayanımının ise azaldığı gözlemlenmiştir. uçucu kül oranının artmasıyla artar. Örneklerin mikroyapısı ve karbon fiber dağılımı SEM (Taramalı Elektron Mikroskobu) kullanılarak incelenmiş ve karbon fiber dağılımının elektriksel iletkenlik ölçümünü destekleyecek şekilde olduğu görülmüştür. Çalışma, harçlardaki karbon fiberin boyut ve orantı etkisinin, C ve F Sınıfı takviyeli harç numuneleri ile karşılaştırılmasını sağlamıştır.

References

  • [1] Çağlar H., Çağlar A., Can Ö., (2020), Graphene Additives Effect on Mechanical and Structural Characterization Properties of Polyvinyl Alcohol (PVA) and Boron Based Cement Mortar, Science of Advanced Materials, 12(2), pp. 269-275.
  • [2] Aldakshe AMA., Çağlar H., Çağlar A., Avan Ç. (2020). The Investigation of Use as Aggregate in Lightweight Concrete Production of Boron Wastes of Eskişehir-Kirka Region, Civil Engineering Journal 7(6), 1328-1335
  • [3] Tezel H., Çağlar H., Çağlar A., Can Ö., Çimen S. (2020). Effects of Boric Acid Additive to Pumice Aggregate Lightweight Concrete Properties, International Journal of Scientific and Technological Research 6(9), 1-10.
  • [4] Palta E., Çağlar H., Çağlar A. (2020), The effect of borıc acıd on mechanical properties and structural characterization of self-compacting concrete, Türk Doğa ve Fen Dergisi, 9, 160-166.
  • [5] Çağlar H., Kale M.O., Çağlar A., Apay A.C., Çimen S. (2021) Improving of Lightweight Concrete Properties Produced With Pumice Aggregate Of Nevşehir Region With Fly Ash Substitution, Academic Platform Journal of Engineering and Science, 9(2), 302-308.
  • [6] Çimen S., Çağlar H., Çağlar A., Can Ö. (2020), Effect of Boron Wastes on the Engineering Properties of Perlite Based Brick, Türk Doğa ve Fen Dergisi, 9(2), 50-56.
  • [7] Kaya, G., Turan, S., 2004, The Evaluation of Blast Furnace Slag in the Production of Products with High Added Value in the Ceramic Industry, Journal of Engineers and Machines, Vol: 45, Issue: 536, pp. 48-60, September 2004.
  • [8] HEAL. 2018. Lignite coal: health effects and advice from the health sector. HEAL: Retrieved from https://www.env-health.org/wp-content/uploads/2018/12/HEAL-Lignite-Briefing-TRweb.pdf
  • [9] TÜİK. (2017, December 18). News Bulletins-Thermal Power Plant Water, Wastewater and Waste Statistics. Retrieved on May 20, 2019 from TURKSTAT: http://tuik.gov.tr/OncekiHBArama.do.
  • [10] Çağlar H., Çağlar A. (2019). Research of Physical and Mechanical Properties of Blended Bricks with Fly Ash Based, Blast Furnace Slag Addition, International Journal of Research –Granthaalayah, 7(1), pp. 126-136.
  • [11] Çağlar, A. , Çağlar, H., Ahıskalı, A., Çimen, S., (2021), The Effect Of Rice Husk Ash On Thermal Properties Of Blend Brick. Mas 14. International European Conference On Mathematics, Engineering, Natural&Medical Sciences . March 26-28,2021 Page 126. Széchenyi Istvan University, Hungary.
  • [12] Dolch, W.L.,Diamond, S., Durability of concrete, 1995. Part 39 of Civil Engineering Handbook, Editor-in-chief, W.F. Chen. Boca Raton: CRC.
  • [13] Demirel, B., (2006). Examination of Stress and Temperature Behaviors of Smart Lightweight Concrete, PhD Thesis, Fırat University, Institute of Science and Technology, Elazig.
  • [14] Chung, D.D.L. and Chen, P., (1993).Carbon Fiber ReinforcedConcreteFor Smart StructuresCapable of Non-Destructive Flaw Detection, Smart Mater. Struct.,2, 22-30.
  • [15] Chen, P. and Chung, D.D.L., (1993). Carbon Fiber Reinforced Concrete as an Electrical Contact Material for Smart Structures, Smart Mater. Struct., 2,181-188.
  • [16] TS EN 197-1/Mart 2002. Cement - Part 1: General Cements - Composition, Properties and Compliance Criteria.
  • [17] TS EN 196-1 TS EN 196-1 Cement Test Methods - Part 1: Determination of Strength, TSE, (2002).
  • [18] TÇMB/AR-GE/Y96.1 Turkey Cement-Concrete Researcher Inventory (1996)
  • [19] TS EN 12350-5, (2010). Concrete - Fresh Concrete Tests - Part 5: Spreading Table Test, Turkish Standards Institute, Ankara, Turkey.
  • [20] Giatec Scientific, www.giatec.ca
  • [21] ASTM C 1760 Standard Test Method for Bulk Electrical Conductivity of Hardened Concrete (Withdrawn 2021) [22] TS EN 12390-5 Concrete - Hardened Concrete Tests - Part 4: Determination of Tensile Strength in Bending of Test Samples, Ankara
There are 21 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Hacer Uzunalioğlu This is me 0000-0001-9367-399X

Salih Yazıcıoğlu 0000-0002-6767-2026

Adem Ahıskalı 0000-0002-1265-7312

Hakan Çağlar 0000-0002-1380-8637

Publication Date December 31, 2022
Submission Date May 28, 2022
Acceptance Date August 15, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Uzunalioğlu, H., Yazıcıoğlu, S., Ahıskalı, A., Çağlar, H. (2022). Exploration of the Effect of Carbon Fiber Ratio and Dimensions on Electrical Conductivity in Mortars. Sürdürülebilir Mühendislik Uygulamaları Ve Teknolojik Gelişmeler Dergisi, 5(2), 199-209. https://doi.org/10.51764/smutgd.1122779

Creative Commons Lisansı
Bu eser Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.