Research Article
BibTex RIS Cite

Thermodynamic Analysis of Geothermal Energy Sourced Organic Rankine Power Plant

Year 2024, Volume: 7 Issue: 1, 1 - 15, 30.06.2024
https://doi.org/10.51764/smutgd.1397480

Abstract

Geothermal energy from geothermal sources is becoming increasingly popular as a sustainable energy source for electricity generation in our country. Binary geothermal power plants are systems that generate electricity with the help of Organic Rankine Cycle (ORC) using geothermal fluid temperature. Energy and exergy analyses of the cycle and each system component that constitutes the cycle are performed in detail. Engineering Equation Solver (EES) software is used for these analyses. N-pentane is used as the working fluid in the ORC system. As a result of the calculations, the overall energy efficiency of the system is found to be 6% and the exergy efficiency is found to be 45%. Changes in efficiencies according to different operating parameters of the system are presented through graphs. It is determined that the highest exergy loss in the power plant is 6.12 MW (26% of the total exergy loss) in air-cooled condenser 2. Finally, various suggestions and recommendations are made in the study to reduce exergy losses and improve system efficiency.

References

  • Abdolalipouradl, M., Mohammadkhani, F., & Khalilarya, S. (2020). A comparative analysis of novel combined flash-binary cycles for Sabalan geothermal wells: Thermodynamic and exergoeconomic viewpoints. Energy, 209, 118235.
  • Alghamdi, M., Al-Kharsan, I., Shahab, S., Albaker, A., Alayi, R., Kumar, L., & El Haj Assad, M. (2023). Investigation of Energy and Exergy of Geothermal Organic Rankine Cycle. Energies, 16(5), 2222.
  • Arpa, İ. (2023). Jeotermal enerji kaynaklı organik rankine güç santralinin termodinamik analizi, Yüksek Lisans Tezi, Isparta Uygulamalı Bilimler Üniversitesi Lisansüstü Eğitim Enstitüsü, Isparta.
  • Bao, J., & Zhao, L. (2013). A review of working fluid and expander selections for organic Rankine cycle. Renewable and sustainable energy reviews, 24, 325-342.
  • Boles, M., & Cengel, Y. (2014). An Engineering Approach. New York: McGraw-Hil l Education.
  • Cammarata, G., Cammarata, L., & Petrone, G. (2014). Thermodynamic analysis of ORC for energy production from geothermal resources. Energy Procedia, 45, 1337-1343.
  • Drescher, U., & Brüggemann, D. (2007). Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants. Applied thermal engineering, 27(1), 223-228.
  • Global Energy Monitor, (2023). https://globalenergymonitor.org/
  • Hu, B., Guo, J., Yang, Y., & Shao, Y. (2022). Selection of working fluid for organic Rankine cycle used in low temperature geothermal power plant. Energy Reports, 8, 179-186.
  • Kanoglu, M., & Bolatturk, A. (2008). Performance and parametric investigation of a binary geothermal power plant by exergy. Renewable Energy, 33(11), 2366-2374.
  • Lebbihiat, N., Atia, A., Arıcı, M., & Meneceur, N. (2021). Geothermal energy use in Algeria: A review on the current status compared to the worldwide, utilization opportunities and countermeasures. Journal of Cleaner Production, 302, 126950.
  • Nasruddin, N., Saputra, I. D., Mentari, T., Bardow, A., Marcelina, O., & Berlin, S. (2020). Exergy, exergoeconomic, and exergoenvironmental optimization of the geothermal binary cycle power plant at Ampallas, West Sulawesi, Indonesia. Thermal Science and Engineering Progress, 19, 100625.
  • Nemati, A., Nami, H., Ranjbar, F., & Yari, M. (2017). A comparative thermodynamic analysis of ORC and Kalina cycles for waste heat recovery: A case study for CGAM cogeneration system. Case Studies in Thermal Engineering, 9, 1-13.
  • Quoilin, S., Orosz, M., Hemond, H., & Lemort, V. (2011). Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation. Solar energy, 85(5), 955-966.
  • Saleh, B., Koglbauer, G., Wendland, M., & Fischer, J. (2007). Working fluids for low-temperature organic Rankine cycles. Energy, 32(7), 1210-1221.
  • Tchanche, B. F., Lambrinos, G., Frangoudakis, A., & Papadakis, G. (2011). Low-grade heat conversion into power using organic Rankine cycles–A review of various applications. Renewable and Sustainable Energy Reviews, 15(8), 3963-3979.
  • TEİAŞ Kurulu Güç Raporu, (2022). https://www.teias.gov.tr/kurulu-guc-raporlari
  • World Nuclear Association Report, (2011). Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources, https://www.world-nuclear.org/uploadedfiles/org/wna/publications/working_group_reports/comparison_of_lifecycle.pdf
  • Yılankırkan, N., & Doğan, H. (2020). Türkiye’nin enerji görünümü ve 2023 yılı birincil enerji arz projeksiyonu. Batman Üniversitesi Yaşam Bilimleri Dergisi, 10(2), 77-92.
  • Yilmaz, F. (2021). Performance and environmental impact assessment of a geothermal-assisted combined plant for multi-generation products. Sustainable Energy Technologies and Assessments, 46, 101291.
  • Zhao, Y., Shi, L., Zhang, X., Gao, J., Luo, G., Ye, C., & Tang, Y. (2024). Life cycle CO2 emission assessment of an organic Rankine cycle based geothermal power plant. International Journal of Low-Carbon Technologies, 19, 149-156.
  • Zhou, C., Doroodchi, E., & Moghtaderi, B. (2013). An in-depth assessment of hybrid solar–geothermal power generation. Energy conversion and management, 74, 88-101.

Jeotermal Enerji Kaynaklı Organik Rankine Güç Santralinin Termodinamik Analizi

Year 2024, Volume: 7 Issue: 1, 1 - 15, 30.06.2024
https://doi.org/10.51764/smutgd.1397480

Abstract

Sürdürülebilir enerji türü olarak jeotermal kaynaklardan elektrik üretimi ülkemizde gittikçe yaygınlaşmaktadır. İkili (binary) jeotermal enerji santrali, jeotermal akışkan ısısından Organik Rankine Çevrimi (ORC) yardımı ile elektrik üreten sistemlerdir. Çevrimin ve çevrimi oluşturan her bir sistem elemanının enerji ve ekserji analizleri ayrıntılı bir şekilde yapılmıştır. Bu analizler için Engineering Equation Solver (EES) yazılımı kullanılmıştır. ORC sisteminde iş akışkanı olarak n-pentan kullanılmıştır. Hesaplamalar sonucunda tüm sistemin enerji verimi %6, ekserji verimi ise %45 olarak bulunmuştur. Sistemin farklı çalışma parametrelerine göre verimlerdeki değişimler grafikler aracılığıyla ortaya konmuştur. Santralde en yüksek ekserji kaybının 6.12 MW (tüm ekserji kaybının %26’sı) ile hava soğutmalı kondenser 2’de olduğu tespit edilmiştir. Çalışmada son olarak ekserji kayıplarının azaltılması ve sistem verimliliğin iyileştirilmesi için çeşitli öneriler ve tavsiyelerde bulunulmuştur.

References

  • Abdolalipouradl, M., Mohammadkhani, F., & Khalilarya, S. (2020). A comparative analysis of novel combined flash-binary cycles for Sabalan geothermal wells: Thermodynamic and exergoeconomic viewpoints. Energy, 209, 118235.
  • Alghamdi, M., Al-Kharsan, I., Shahab, S., Albaker, A., Alayi, R., Kumar, L., & El Haj Assad, M. (2023). Investigation of Energy and Exergy of Geothermal Organic Rankine Cycle. Energies, 16(5), 2222.
  • Arpa, İ. (2023). Jeotermal enerji kaynaklı organik rankine güç santralinin termodinamik analizi, Yüksek Lisans Tezi, Isparta Uygulamalı Bilimler Üniversitesi Lisansüstü Eğitim Enstitüsü, Isparta.
  • Bao, J., & Zhao, L. (2013). A review of working fluid and expander selections for organic Rankine cycle. Renewable and sustainable energy reviews, 24, 325-342.
  • Boles, M., & Cengel, Y. (2014). An Engineering Approach. New York: McGraw-Hil l Education.
  • Cammarata, G., Cammarata, L., & Petrone, G. (2014). Thermodynamic analysis of ORC for energy production from geothermal resources. Energy Procedia, 45, 1337-1343.
  • Drescher, U., & Brüggemann, D. (2007). Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants. Applied thermal engineering, 27(1), 223-228.
  • Global Energy Monitor, (2023). https://globalenergymonitor.org/
  • Hu, B., Guo, J., Yang, Y., & Shao, Y. (2022). Selection of working fluid for organic Rankine cycle used in low temperature geothermal power plant. Energy Reports, 8, 179-186.
  • Kanoglu, M., & Bolatturk, A. (2008). Performance and parametric investigation of a binary geothermal power plant by exergy. Renewable Energy, 33(11), 2366-2374.
  • Lebbihiat, N., Atia, A., Arıcı, M., & Meneceur, N. (2021). Geothermal energy use in Algeria: A review on the current status compared to the worldwide, utilization opportunities and countermeasures. Journal of Cleaner Production, 302, 126950.
  • Nasruddin, N., Saputra, I. D., Mentari, T., Bardow, A., Marcelina, O., & Berlin, S. (2020). Exergy, exergoeconomic, and exergoenvironmental optimization of the geothermal binary cycle power plant at Ampallas, West Sulawesi, Indonesia. Thermal Science and Engineering Progress, 19, 100625.
  • Nemati, A., Nami, H., Ranjbar, F., & Yari, M. (2017). A comparative thermodynamic analysis of ORC and Kalina cycles for waste heat recovery: A case study for CGAM cogeneration system. Case Studies in Thermal Engineering, 9, 1-13.
  • Quoilin, S., Orosz, M., Hemond, H., & Lemort, V. (2011). Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation. Solar energy, 85(5), 955-966.
  • Saleh, B., Koglbauer, G., Wendland, M., & Fischer, J. (2007). Working fluids for low-temperature organic Rankine cycles. Energy, 32(7), 1210-1221.
  • Tchanche, B. F., Lambrinos, G., Frangoudakis, A., & Papadakis, G. (2011). Low-grade heat conversion into power using organic Rankine cycles–A review of various applications. Renewable and Sustainable Energy Reviews, 15(8), 3963-3979.
  • TEİAŞ Kurulu Güç Raporu, (2022). https://www.teias.gov.tr/kurulu-guc-raporlari
  • World Nuclear Association Report, (2011). Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources, https://www.world-nuclear.org/uploadedfiles/org/wna/publications/working_group_reports/comparison_of_lifecycle.pdf
  • Yılankırkan, N., & Doğan, H. (2020). Türkiye’nin enerji görünümü ve 2023 yılı birincil enerji arz projeksiyonu. Batman Üniversitesi Yaşam Bilimleri Dergisi, 10(2), 77-92.
  • Yilmaz, F. (2021). Performance and environmental impact assessment of a geothermal-assisted combined plant for multi-generation products. Sustainable Energy Technologies and Assessments, 46, 101291.
  • Zhao, Y., Shi, L., Zhang, X., Gao, J., Luo, G., Ye, C., & Tang, Y. (2024). Life cycle CO2 emission assessment of an organic Rankine cycle based geothermal power plant. International Journal of Low-Carbon Technologies, 19, 149-156.
  • Zhou, C., Doroodchi, E., & Moghtaderi, B. (2013). An in-depth assessment of hybrid solar–geothermal power generation. Energy conversion and management, 74, 88-101.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Articles
Authors

İsmail Arpa 0000-0002-1160-3793

Arzu Şencan Şahin 0000-0001-8519-4788

Publication Date June 30, 2024
Submission Date December 5, 2023
Acceptance Date April 4, 2024
Published in Issue Year 2024 Volume: 7 Issue: 1

Cite

APA Arpa, İ., & Şencan Şahin, A. (2024). Jeotermal Enerji Kaynaklı Organik Rankine Güç Santralinin Termodinamik Analizi. Sürdürülebilir Mühendislik Uygulamaları Ve Teknolojik Gelişmeler Dergisi, 7(1), 1-15. https://doi.org/10.51764/smutgd.1397480

Cited By

Jeotermal Enerji Kaynaklı Organik Rankine Güç Santralinin Termodinamik Analizi
Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi
https://doi.org/10.51764/smutgd.1397480

Creative Commons Lisansı
Bu eser Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.