Research Article
BibTex RIS Cite
Year 2024, , 17 - 31, 23.07.2024
https://doi.org/10.21657/soilst.1520563

Abstract

References

  • Abedinpour, M., Sarangi, A., Rajput, T. B. S., Singh, M., Pathak, H., & Ahmad, T. (2012). Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agricultural Water Management, 110, 55-66. https://doi.org/10.1016/j.agwat.2012.04.001
  • Andarzian, B., Bannayan, M., Steduto, P., Mazraeh, H., Barati, M. E., Barati, M. A., & Rahnama, A. (2011). Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management, 100(1), 1-8. https://doi.org/10.1016/j.agwat.2011.08.023
  • Anonim (2021). https://arastirma.tarimorman.gov.tr/tarlabitkileri/Belgeler/cesit_katalogu.pdf (Erişim tarihi: 24/08/2021).
  • Abedinpour, M. (2021). The comparison of DSSAT-CERES and AquaCrop models for wheat under water–nitrogen interactions. Communications in Soil Science and Plant Analysis, 52(17), 2002-2017.
  • Araya, A., Habtu, S., Hadgu, K. M., Kebede, A., & Dejene, T. (2010). Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare). Agricultural Water Management, 97(11), 1838-1846. https://doi.org/10.1016/j.agwat.2010.06.021
  • Ebrahimi, M., Verdinejad, V. R., & Mjnooni-Heris, A. (2015). Dynamic Simulation through Aqua Crop of Maize Growth under Different Management Decisions of Water Application and Nitrogen Fertilizer Use. Iranian Journal of Soil and Water Research, 46(2), 207-220. https://doi.org/10.22059/IJSWR.2015.55926
  • Farahani, H. J., Izzi, G., & Oweis, T. Y. (2009). Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agronomy journal, 101(3),469-476. https://doi.org/10.2134/agronj2008.0182s
  • Guo, D., Zhao, R., Xing, X., & Ma, X. (2020). Global sensitivity and uncertainty analysis of the AquaCrop model for maize under different irrigation and fertilizer management conditions. Archives of Agronomy and Soil Science, 66(8), 1115-1133. https://doi.10.1080/03650340.2019.1657845
  • Ghanbbari, A., & Tavassoli, A. (2013). Simulation of wheat yield using AquaCrop model in Shirvan region. International Journal of Agriculture and Crop Sciences (IJACS), 6(6), 342-352.
  • Heng, K., Hsiao, T., Evett, S., Howell, T., & Steduto, P., (2009). Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agron.J. 101, 488–498.https://doi.10.2134/agronj2008.0029xs
  • Hsiao, T. C., Heng, L., Steduto, P., Rojas‐Lara, B., Raes, D., & Fereres, E. (2009). AquaCrop—the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal, 101(3), 448-459.https://doi.10.2134/agronj2008.0218s
  • Iqbal, M. A., Shen, Y., Stricevic, R., Pei, H., Sun, H., Amiri, E., ... & del Rio, S. (2014). Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agricultural Water Management, 135, 61-72. https://doi.10.1016/j.agwat.2013.12.012
  • Janssen, P. H., & Heuberger, P. S. (1995). Calibration of process-oriented models. Ecological modelling, 83 (1-2), 55-66. https://doi.10.1016/0304-3800(95)00084-9
  • Korkmaz, A., Bayraklı, F., & Gülser, C. (2000). Bafra ve Çarşamba Ovalarında mısır bitkisinin azotlu ve fosforlu gübre ihtiyacının belirlenmesinde matematiksel modellerin uygulanabilirliği. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi (Anadolu Tarım Bilimleri Dergisi), 15(1), 33-40.
  • Köksal, H., & Kanber, R., (2003). Bitki Büyüme Modelleri. Köy Hizmetleri Genel Müdürlüğü. APK Dairesi Başkanlığı. Toprak ve Su Kaynakları Şube Müdürlüğü. Yayın No:122. Sulama ve Drenaj Mühendisliği. S.188-202. Ankara.
  • Lyman, O. R. (1993). An introduction to statistical methods and data analysis. Duxbury Press. Belmont. CA. USA. pp. 247-250.
  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models: Part I - A discussion of principles. J. Hydrology 10. 282-290. http://dx.doi.org/10.1016/0022-1694(70)90255-6
  • Raes, D., Steduto. P., Hsiao. T. C., & Fereres. E. (2009). Chapter One: AquaCrop – The FAO crop model to simulate yield response to water. FAO. 1-10. https://doi.org/10.2134/agronj2008.0139s
  • Raes, D., Steduto. P., Hsiao. T. C., & Fereres. E. (2009). Chapter Two: Users Guide. FAO. 1-89.
  • Raes, D., Steduto. P., Hsiao. T.C., & Fereres. E. (2009). Chapter Three: Calculation procedures. FAO.1-79.
  • Raes, D., Steduto. P., Hsiao. T.C., & Fereres. E. (2009). AquaCrop – The FAO crop model to simulate yield response to water: II. Main algorithms and software description. 438-447.
  • Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2011). AquaCrop version 3.1 plus: FAO cropwater productivity model to simulate yield response to water. Reference Manual. FAO, Rome.
  • Saab, M. T. A., Todorovic, M., & Albrizio, R. (2015). Comparing AquaCrop and CropSyst models in simulating barley growth and yield under different water and nitrogen regimes. Does calibration year influence the performance of crop growth models?. Agricultural water management, 147, 21-33. https://doi.10.1016/j.agwat.2014.08.001
  • Sandhu, R., & Irmak, S. (2019). Assessment of AquaCrop model in simulating maize canopy cover, soil-water, evapotranspiration, yield, and water productivity for different planting dates, densities under irrigated, and rainfed conditions. Agricultural Water Management, 224, 105753. https://doi.org/10.1016/j.agwat.2019.105753
  • Sema, K. A. L. E., & Madenoğlu, S. (2018). Evaluating AquaCrop model for winter wheat under various irrigation conditions in Turkey. Journal of Agricultural Sciences, 24(2), 205-217. https://doi.org/10.15832/ankutbd.446438
  • Sırlı, B. A., Çelik, S. K., Yıldız, H., & Aydoğdu, M. (2023). Yield prediction of wheat at different sowing dates and irrigation regimes using the AquaCrop model. International Journal of Agriculture Environment and Food Sciences, 7(4), 874-886. https://doi.org/10.31015/jaefs.2023.4.18
  • Steduto, P., Hsiao, T. C., Raes, D., & Fereres, E. (2009). AquaCrop—the FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy journal, 101(3), 426-437. https://doi.org/10.2134/agronj2008.0139s
  • Tavakoli, A. R., Moghadam, M. M., & Sepaskhah, A. R. (2015). Evaluation of the AquaCrop model for barley production under deficit irrigation and rainfed condition in Iran. Agricultural Water Management, 161, 136-146.https://doi.10.1016/j.agwat.2015.07.020
  • Yüksel, M., & Dengiz, O. (2001). Tarla Bitkileri Merkez Araştırma Enstitüsü İkizce Araştırma Çiftliğinin Arazi Değerlendirmesi. Journal of Agricultural Sciences, 7(04), 129-135. https://doi.org/10.1501/Tarimbil_0000000699
  • Zeleke, K. T., Luckett, D., & Cowley, R. (2011). Calibration and testing of the FAO AquaCrop model for canola. Agronomy Journal, 103(6), 1610-1618. https://doi.10.2134/agronj2011.0150 Zhang, W., Liu, W., Xue, Q., Chen, J., & Han, X. (2013). Evaluation of the AquaCrop model for simulating yield response of winter wheat to water on the southern Loess Plateau of China. Water science and technology, 68(4), 821-828. https://doi.10.2166/wst.2013.305

Development of yield prediction model for wheat by using AquaCrop model with different nitrogen dose applications in Central Anatolia Region (semi arid) conditions

Year 2024, , 17 - 31, 23.07.2024
https://doi.org/10.21657/soilst.1520563

Abstract

In this study, yield prediction was made for Tosunbey and Bayraktar bread wheat varieties under rainfall conditions and 4 different fertilizer ratios with AquaCrop model, one of the plant growth models. In this experiment conducted at Haymana Ikizce Research Farm, actual field observations and model predicted grain yield, biomass, and green area coverage ratio were evaluated. Mean deviation (α), standard error (RMSE), and model efficiency coefficient (E) tests were used to determine the performance of the model. The AquaCrop model was calibrated in the first year and validated based on observational data collected in the first and second years of the experiment, respectively. Based on the results obtained, it was observed that the AquaCrop model simulated grain yield at different levels of nitrogen fertilizer applications with higher precision for Bayraktar variety. For Bayraktar variety, grain yield E = 0.93 in the first year and 0.99 in the second year for grain yield, and E = 0.83 in the first year and 0.98 in the second year for biomass, indicating excellent agreement between model and observation was found. In Tosunbey variety, first-year grain yield E=0.66 and 2nd year grain yield 0.76 were found. The 2nd year RMSE value for grain yield of Bayraktar variety was 0.266, and the 2nd year RMSE value for the grain yield of Tosunbey variety was 0.664 and found to be statistically compatible. Grain yield, biomass, and percent cover (CC) values obtained from the model were found to be highly consistent with field observations.

References

  • Abedinpour, M., Sarangi, A., Rajput, T. B. S., Singh, M., Pathak, H., & Ahmad, T. (2012). Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agricultural Water Management, 110, 55-66. https://doi.org/10.1016/j.agwat.2012.04.001
  • Andarzian, B., Bannayan, M., Steduto, P., Mazraeh, H., Barati, M. E., Barati, M. A., & Rahnama, A. (2011). Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management, 100(1), 1-8. https://doi.org/10.1016/j.agwat.2011.08.023
  • Anonim (2021). https://arastirma.tarimorman.gov.tr/tarlabitkileri/Belgeler/cesit_katalogu.pdf (Erişim tarihi: 24/08/2021).
  • Abedinpour, M. (2021). The comparison of DSSAT-CERES and AquaCrop models for wheat under water–nitrogen interactions. Communications in Soil Science and Plant Analysis, 52(17), 2002-2017.
  • Araya, A., Habtu, S., Hadgu, K. M., Kebede, A., & Dejene, T. (2010). Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare). Agricultural Water Management, 97(11), 1838-1846. https://doi.org/10.1016/j.agwat.2010.06.021
  • Ebrahimi, M., Verdinejad, V. R., & Mjnooni-Heris, A. (2015). Dynamic Simulation through Aqua Crop of Maize Growth under Different Management Decisions of Water Application and Nitrogen Fertilizer Use. Iranian Journal of Soil and Water Research, 46(2), 207-220. https://doi.org/10.22059/IJSWR.2015.55926
  • Farahani, H. J., Izzi, G., & Oweis, T. Y. (2009). Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agronomy journal, 101(3),469-476. https://doi.org/10.2134/agronj2008.0182s
  • Guo, D., Zhao, R., Xing, X., & Ma, X. (2020). Global sensitivity and uncertainty analysis of the AquaCrop model for maize under different irrigation and fertilizer management conditions. Archives of Agronomy and Soil Science, 66(8), 1115-1133. https://doi.10.1080/03650340.2019.1657845
  • Ghanbbari, A., & Tavassoli, A. (2013). Simulation of wheat yield using AquaCrop model in Shirvan region. International Journal of Agriculture and Crop Sciences (IJACS), 6(6), 342-352.
  • Heng, K., Hsiao, T., Evett, S., Howell, T., & Steduto, P., (2009). Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agron.J. 101, 488–498.https://doi.10.2134/agronj2008.0029xs
  • Hsiao, T. C., Heng, L., Steduto, P., Rojas‐Lara, B., Raes, D., & Fereres, E. (2009). AquaCrop—the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal, 101(3), 448-459.https://doi.10.2134/agronj2008.0218s
  • Iqbal, M. A., Shen, Y., Stricevic, R., Pei, H., Sun, H., Amiri, E., ... & del Rio, S. (2014). Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agricultural Water Management, 135, 61-72. https://doi.10.1016/j.agwat.2013.12.012
  • Janssen, P. H., & Heuberger, P. S. (1995). Calibration of process-oriented models. Ecological modelling, 83 (1-2), 55-66. https://doi.10.1016/0304-3800(95)00084-9
  • Korkmaz, A., Bayraklı, F., & Gülser, C. (2000). Bafra ve Çarşamba Ovalarında mısır bitkisinin azotlu ve fosforlu gübre ihtiyacının belirlenmesinde matematiksel modellerin uygulanabilirliği. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi (Anadolu Tarım Bilimleri Dergisi), 15(1), 33-40.
  • Köksal, H., & Kanber, R., (2003). Bitki Büyüme Modelleri. Köy Hizmetleri Genel Müdürlüğü. APK Dairesi Başkanlığı. Toprak ve Su Kaynakları Şube Müdürlüğü. Yayın No:122. Sulama ve Drenaj Mühendisliği. S.188-202. Ankara.
  • Lyman, O. R. (1993). An introduction to statistical methods and data analysis. Duxbury Press. Belmont. CA. USA. pp. 247-250.
  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models: Part I - A discussion of principles. J. Hydrology 10. 282-290. http://dx.doi.org/10.1016/0022-1694(70)90255-6
  • Raes, D., Steduto. P., Hsiao. T. C., & Fereres. E. (2009). Chapter One: AquaCrop – The FAO crop model to simulate yield response to water. FAO. 1-10. https://doi.org/10.2134/agronj2008.0139s
  • Raes, D., Steduto. P., Hsiao. T. C., & Fereres. E. (2009). Chapter Two: Users Guide. FAO. 1-89.
  • Raes, D., Steduto. P., Hsiao. T.C., & Fereres. E. (2009). Chapter Three: Calculation procedures. FAO.1-79.
  • Raes, D., Steduto. P., Hsiao. T.C., & Fereres. E. (2009). AquaCrop – The FAO crop model to simulate yield response to water: II. Main algorithms and software description. 438-447.
  • Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2011). AquaCrop version 3.1 plus: FAO cropwater productivity model to simulate yield response to water. Reference Manual. FAO, Rome.
  • Saab, M. T. A., Todorovic, M., & Albrizio, R. (2015). Comparing AquaCrop and CropSyst models in simulating barley growth and yield under different water and nitrogen regimes. Does calibration year influence the performance of crop growth models?. Agricultural water management, 147, 21-33. https://doi.10.1016/j.agwat.2014.08.001
  • Sandhu, R., & Irmak, S. (2019). Assessment of AquaCrop model in simulating maize canopy cover, soil-water, evapotranspiration, yield, and water productivity for different planting dates, densities under irrigated, and rainfed conditions. Agricultural Water Management, 224, 105753. https://doi.org/10.1016/j.agwat.2019.105753
  • Sema, K. A. L. E., & Madenoğlu, S. (2018). Evaluating AquaCrop model for winter wheat under various irrigation conditions in Turkey. Journal of Agricultural Sciences, 24(2), 205-217. https://doi.org/10.15832/ankutbd.446438
  • Sırlı, B. A., Çelik, S. K., Yıldız, H., & Aydoğdu, M. (2023). Yield prediction of wheat at different sowing dates and irrigation regimes using the AquaCrop model. International Journal of Agriculture Environment and Food Sciences, 7(4), 874-886. https://doi.org/10.31015/jaefs.2023.4.18
  • Steduto, P., Hsiao, T. C., Raes, D., & Fereres, E. (2009). AquaCrop—the FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy journal, 101(3), 426-437. https://doi.org/10.2134/agronj2008.0139s
  • Tavakoli, A. R., Moghadam, M. M., & Sepaskhah, A. R. (2015). Evaluation of the AquaCrop model for barley production under deficit irrigation and rainfed condition in Iran. Agricultural Water Management, 161, 136-146.https://doi.10.1016/j.agwat.2015.07.020
  • Yüksel, M., & Dengiz, O. (2001). Tarla Bitkileri Merkez Araştırma Enstitüsü İkizce Araştırma Çiftliğinin Arazi Değerlendirmesi. Journal of Agricultural Sciences, 7(04), 129-135. https://doi.org/10.1501/Tarimbil_0000000699
  • Zeleke, K. T., Luckett, D., & Cowley, R. (2011). Calibration and testing of the FAO AquaCrop model for canola. Agronomy Journal, 103(6), 1610-1618. https://doi.10.2134/agronj2011.0150 Zhang, W., Liu, W., Xue, Q., Chen, J., & Han, X. (2013). Evaluation of the AquaCrop model for simulating yield response of winter wheat to water on the southern Loess Plateau of China. Water science and technology, 68(4), 821-828. https://doi.10.2166/wst.2013.305
There are 30 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Research Articles
Authors

Belgin Alsancak Sırlı 0000-0002-7779-6778

Hakan Yıldız 0000-0002-7627-7503

Metin Aydoğdu 0000-0001-6920-1976

Sema Kale Çelik 0000-0001-8161-276X

Publication Date July 23, 2024
Submission Date February 28, 2024
Acceptance Date March 30, 2024
Published in Issue Year 2024

Cite

APA Alsancak Sırlı, B., Yıldız, H., Aydoğdu, M., Kale Çelik, S. (2024). Development of yield prediction model for wheat by using AquaCrop model with different nitrogen dose applications in Central Anatolia Region (semi arid) conditions. Soil Studies, 13(1), 17-31. https://doi.org/10.21657/soilst.1520563