Research Article
BibTex RIS Cite

Üstyapı Projelerinin Kritik Yol Segmentleri (CPS) ve Kritik Yol Metodu (CPM) ile Çizelgelenmesi: Bir Vaka Çalışması

Year 2024, Issue: 23, 1 - 20, 26.06.2024

Abstract

Bir inşaat projesinin başarısı, uygulanan çizelgeleme yöntemine ve ne kadar iyi bir şekilde yürütüldüğüne bağlıdır. Planlama ve çizelgeleme teknikleri, başarılı projelerin gerçekleştirilmesi için çok önemlidir. Geleneksel kritik yol yöntemi (CPM), inşaat projelerinin çizelgelenmesi için yaygın olarak kullanılmasına rağmen bazı dezavantajlara sahiptir. Bu çalışmada, Nisan 2021’de başlayan ve Temmuz 2022’de tamamlanan Kayseri ilindeki bir konut projesine, her bir faaliyetin süresini ayrı zaman segmentlerine ayırarak daha ince bir ayrıntı düzeyine sahip kritik yol segmentleri (CPS) olarak adlandırılan bir teknik uygulanmıştır. Elde edilen sonuçlar CPM ile karşılaştırılmıştır. CPS’in CPM’e alternatif bir çizelgeleme aracı olup olamayacağı da değerlendirilmiştir. Literatürde CPS tabanlı çalışmaların sayısı sınırlıdır. Ayrıca yapılan çalışmalarda planlama aşaması dikkate alınmış, fiili aşama dikkate alınmamıştır. Bu nedenle bu çalışmada CPM ve CPS kullanılarak oluşturulan çizelgeler planlanan ve gerçekleşen aşamalar için değerlendirilmiştir. Sonuçlar, bireysel olarak CPS’in ağ gösterimini basitleştirme ve kritik yolu doğru bir şekilde tanımlama yeteneğini kısmen de olsa göstermiştir. Ancak CPM ile kıyaslandığında, kayda değer bir avantaj sunmadığı tespit edilmiştir. Bununla birlikte, CPS, kısmen kritik faaliyetlerde anormal bolluklar ortaya çıkarmıştır.

References

  • Aboelmagd, Y. M. R. (2020). Smart critical path method as a modified detailed scheduling technique, J. Eng. Sci. Assiut Univ. Fac. Eng., 48(1), 1-10.
  • Ackley, A., Baker, J. and Lowe, S. (2007). Top ten CPM scheduling mistakes, Rail Conference 2007 Proceedings. Toronto, On, June.
  • Adeli, H. and Karim, A. (2001). Construction Scheduling, Cost Optimization, and Management-A New Model Based on Neurocomputing and Object Technologies. Spon Press, USA and Canada.
  • Ayyarkın, T. (2022). Çevre ve Şehircilik İklim Değişikliği Bakanlığı’nın Birim Fiyat ve İş Gücü İstatistiklerinin Analizi (Analysis of the unit prices and the labor statistics of Turkish Ministry of Environment, Urbanization and Climate Change), M.Sc. thesis, Erciyes University, Kayseri, Turkey (in Turkish).
  • Bayram, S. (2017). Duration prediction models for construction projects: In terms of cost or physical characteristics? KSCE J. Civ. Eng., 21(6), 2049-2060. https://doi.org/10.1007/s12205-016-0691-2 Bilgin, G., Bilgin, P., Dikmen, I. and Birgonul, M. (2019). Innovation vision of the Turkish construction industry: a comparative qualitative content analysis of strategic roadmaps. Int. Conf. on Innovation, Technology, Enterprise and Entrepreneurship (ICITEE), 24–25 November, Bahrain.
  • Carson, C., Oakander, P. and Relyea, C. (2014). CPM Scheduling for Construction Best Practices and Guidelines. Project Management Institute, Inc.
  • Elbeltagi, E. (2009). Lecture Notes on Construction Project Management. Structural Engineering Department, Mansoura University, Egypt.
  • Elbeltagi, E., Ammar, M., Haytham, S. and Kassab, M. (2016). Overall multiobjective optimization of construction projects scheduling using particle swarm, Eng. Constr. Archit. Manage., 23(3), 265–282. https://doi.org/10.1108/ECAM-11-2014-0135
  • El-kholy, A. M. (2013). Time–cost tradeoff analysis considering funding variability and time uncertainty, Alex. Eng. J., 52(1), 113–121. https://doi.org/10.1016/j.aej.2012.07.007
  • Eshtehardian, E., Afshar, A. and Abbasnia, R. (2009). Fuzzy-based MOGA approach to stochastic time–cost trade-off problem, Autom. Constr., 18(5), 692–701. https://doi.org/10.1016/j.autcon.2009.02.001
  • Gurcanli, G. E., Mahcicek, S. B., Serpel, E. and Attia, S. (2021). Factors affecting productivity of technical personel in Turkish construction industry: a field study, Arab. J. Sci. Eng., 46, 11339–11353. https://doi.org/10.1007/s13369-021-05789-z
  • Hegazy, T. and Menesi, W. (2010). Critical path segments scheduling technique, J. Constr. Eng. and Manage., 136(10), 1078-1085. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000212
  • Hegazy, T. and Menesi, W. (2012). Enhancing the critical path segments scheduling technique for project control, Can. J. Civ. Eng., 39(9), 968-977. https://doi.org/10.1139/l2012-024
  • Hinze, J. W. (2012). Construction Planning and Scheduling. Pearson Prentice Hall.
  • Joshi, R. and Patil, V. Z. (2015). Resource scheduling of construction project: case study, Int. J. Sci. and Res., 4(5), 563-568.
  • Kelley, J. E. and Walker, M. R. (1959). Critical-Path Planning and Scheduling: An Introduction. Mauchly Associates, Inc., Amnlor, Pa.
  • Li, H., Zheng, L. and Zhu, H. (2023). Resource leveling in projects with flexible structures, Ann. Oper. Res., 321(1-2), 311-342.
  • Lowsley, S. and Linnett, C. (2006). About Time: Delay Analysis in Construction. RICS Business Services Limited, UK.
  • Lu, M. and Lam, H.-C. (2008). Critical path scheduling under resource calendar constraints, J. Constr. Eng. Manage., 134(1), 25-31. https://doi.org/10.1061/(ASCE)0733-9364(2008)134:1(25)
  • Menesi, W. (2010). Construction Scheduling Using Critical Path Analysis with Separate Time Segments. University of Waterloo, PH.D. thesis, Canada.
  • Menesi, W. and Hegazy, T. (2011). Why CPS is better than CPM? Proceedings of the Annual Conference, Canadian Society for Civil Engineering (CSCE), June 14-17, Ottawa, ON, Canada.
  • Mohamed, Z. A. (2018). Comprehensive CP Optimization for Dynamic Scheduling in Construction. University of Waterloo, PH.D. thesis, Canada. http://hdl.handle.net/10012/13282
  • Mubarak, S. (2019). Construction Project Scheduling and Control (4th edition). John Wiley & Sons, Inc, ABD.
  • Nouban, F. and Ghaboun, N. (2017). The factors affecting the methods of construction projects scheduling: A state of the art and overview, Asian J. Nat. Appl. Sci., 6(4), 114–122.
  • Panwar, A. and Jha, K.N. (2019). A many-objective optimization model for construction scheduling, Construct. Manage. Econ., 37(12), 727–739. https://doi.org/10.1080/01446193.2019.1590615
  • Paz, D. H. F., Lafayette, K. P. V. and Sobral, M.C.M. (2020). Management of construction and demolition waste using GIS tools. 121-156. In: Advances in Construction and Demolition Waste Recycling (Eds: F. Pacheco-Torgal, Y. Ding, F. Colangelo, R. Tuladhar, A. Koutamanis). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-819055-5.00008-5
  • PMBOK® A Guide to the Project Management Body of Knowledge (6th edition). Project Management Institute Inc, Pennsylvania, ABD. (2017).
  • Prakash, J. J. and Vidjeapriya, R. (2020). Critical path method and time-cost trade off analysis – a review, Int. J. Eng. Res. Dev., 16(7), 49-58.
  • Scavino, N. J. (2003). Effect of multiple calendars on total float and critical path, Cost Engineering, 45(6), 11-15.
  • Taner, Z. T., Parlak Biçer, Z. O. and Bayram, S. (2020). Comparing the benefits of CPM and PERT for the project manager in terms of different construction projects, 6th Int. Project and Construction Management Conference (e-IPCMC2020), 301-311.
  • Tang, P. and Mukherjee, A. (2012). Activity criticality index assessment using critical path segment technique and interactive simulation, Construction Research Congress 2012, ASCE, 1094-1103. https://doi.org/10.1061/9780784412329.110
  • Wagh, H. B. (2017). Duration and quantity-based project control using time segments scheduling technique, Int. J. Sci. Technol. Manage. Res., 2(8), 1-4.
  • Wickwire, J. M. and Ockman, S. (2000). Industry crisis: Construction scheduling software, 2000 AACE International Transactions, CDR.02.1-CDR.02.8.
  • Zhang, L. and Zou, X. (2015). Repetitive Project Scheduling: Theory and Methods. Elsevier Inc, Amsterdam, Netherlands.
Year 2024, Issue: 23, 1 - 20, 26.06.2024

Abstract

References

  • Aboelmagd, Y. M. R. (2020). Smart critical path method as a modified detailed scheduling technique, J. Eng. Sci. Assiut Univ. Fac. Eng., 48(1), 1-10.
  • Ackley, A., Baker, J. and Lowe, S. (2007). Top ten CPM scheduling mistakes, Rail Conference 2007 Proceedings. Toronto, On, June.
  • Adeli, H. and Karim, A. (2001). Construction Scheduling, Cost Optimization, and Management-A New Model Based on Neurocomputing and Object Technologies. Spon Press, USA and Canada.
  • Ayyarkın, T. (2022). Çevre ve Şehircilik İklim Değişikliği Bakanlığı’nın Birim Fiyat ve İş Gücü İstatistiklerinin Analizi (Analysis of the unit prices and the labor statistics of Turkish Ministry of Environment, Urbanization and Climate Change), M.Sc. thesis, Erciyes University, Kayseri, Turkey (in Turkish).
  • Bayram, S. (2017). Duration prediction models for construction projects: In terms of cost or physical characteristics? KSCE J. Civ. Eng., 21(6), 2049-2060. https://doi.org/10.1007/s12205-016-0691-2 Bilgin, G., Bilgin, P., Dikmen, I. and Birgonul, M. (2019). Innovation vision of the Turkish construction industry: a comparative qualitative content analysis of strategic roadmaps. Int. Conf. on Innovation, Technology, Enterprise and Entrepreneurship (ICITEE), 24–25 November, Bahrain.
  • Carson, C., Oakander, P. and Relyea, C. (2014). CPM Scheduling for Construction Best Practices and Guidelines. Project Management Institute, Inc.
  • Elbeltagi, E. (2009). Lecture Notes on Construction Project Management. Structural Engineering Department, Mansoura University, Egypt.
  • Elbeltagi, E., Ammar, M., Haytham, S. and Kassab, M. (2016). Overall multiobjective optimization of construction projects scheduling using particle swarm, Eng. Constr. Archit. Manage., 23(3), 265–282. https://doi.org/10.1108/ECAM-11-2014-0135
  • El-kholy, A. M. (2013). Time–cost tradeoff analysis considering funding variability and time uncertainty, Alex. Eng. J., 52(1), 113–121. https://doi.org/10.1016/j.aej.2012.07.007
  • Eshtehardian, E., Afshar, A. and Abbasnia, R. (2009). Fuzzy-based MOGA approach to stochastic time–cost trade-off problem, Autom. Constr., 18(5), 692–701. https://doi.org/10.1016/j.autcon.2009.02.001
  • Gurcanli, G. E., Mahcicek, S. B., Serpel, E. and Attia, S. (2021). Factors affecting productivity of technical personel in Turkish construction industry: a field study, Arab. J. Sci. Eng., 46, 11339–11353. https://doi.org/10.1007/s13369-021-05789-z
  • Hegazy, T. and Menesi, W. (2010). Critical path segments scheduling technique, J. Constr. Eng. and Manage., 136(10), 1078-1085. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000212
  • Hegazy, T. and Menesi, W. (2012). Enhancing the critical path segments scheduling technique for project control, Can. J. Civ. Eng., 39(9), 968-977. https://doi.org/10.1139/l2012-024
  • Hinze, J. W. (2012). Construction Planning and Scheduling. Pearson Prentice Hall.
  • Joshi, R. and Patil, V. Z. (2015). Resource scheduling of construction project: case study, Int. J. Sci. and Res., 4(5), 563-568.
  • Kelley, J. E. and Walker, M. R. (1959). Critical-Path Planning and Scheduling: An Introduction. Mauchly Associates, Inc., Amnlor, Pa.
  • Li, H., Zheng, L. and Zhu, H. (2023). Resource leveling in projects with flexible structures, Ann. Oper. Res., 321(1-2), 311-342.
  • Lowsley, S. and Linnett, C. (2006). About Time: Delay Analysis in Construction. RICS Business Services Limited, UK.
  • Lu, M. and Lam, H.-C. (2008). Critical path scheduling under resource calendar constraints, J. Constr. Eng. Manage., 134(1), 25-31. https://doi.org/10.1061/(ASCE)0733-9364(2008)134:1(25)
  • Menesi, W. (2010). Construction Scheduling Using Critical Path Analysis with Separate Time Segments. University of Waterloo, PH.D. thesis, Canada.
  • Menesi, W. and Hegazy, T. (2011). Why CPS is better than CPM? Proceedings of the Annual Conference, Canadian Society for Civil Engineering (CSCE), June 14-17, Ottawa, ON, Canada.
  • Mohamed, Z. A. (2018). Comprehensive CP Optimization for Dynamic Scheduling in Construction. University of Waterloo, PH.D. thesis, Canada. http://hdl.handle.net/10012/13282
  • Mubarak, S. (2019). Construction Project Scheduling and Control (4th edition). John Wiley & Sons, Inc, ABD.
  • Nouban, F. and Ghaboun, N. (2017). The factors affecting the methods of construction projects scheduling: A state of the art and overview, Asian J. Nat. Appl. Sci., 6(4), 114–122.
  • Panwar, A. and Jha, K.N. (2019). A many-objective optimization model for construction scheduling, Construct. Manage. Econ., 37(12), 727–739. https://doi.org/10.1080/01446193.2019.1590615
  • Paz, D. H. F., Lafayette, K. P. V. and Sobral, M.C.M. (2020). Management of construction and demolition waste using GIS tools. 121-156. In: Advances in Construction and Demolition Waste Recycling (Eds: F. Pacheco-Torgal, Y. Ding, F. Colangelo, R. Tuladhar, A. Koutamanis). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-819055-5.00008-5
  • PMBOK® A Guide to the Project Management Body of Knowledge (6th edition). Project Management Institute Inc, Pennsylvania, ABD. (2017).
  • Prakash, J. J. and Vidjeapriya, R. (2020). Critical path method and time-cost trade off analysis – a review, Int. J. Eng. Res. Dev., 16(7), 49-58.
  • Scavino, N. J. (2003). Effect of multiple calendars on total float and critical path, Cost Engineering, 45(6), 11-15.
  • Taner, Z. T., Parlak Biçer, Z. O. and Bayram, S. (2020). Comparing the benefits of CPM and PERT for the project manager in terms of different construction projects, 6th Int. Project and Construction Management Conference (e-IPCMC2020), 301-311.
  • Tang, P. and Mukherjee, A. (2012). Activity criticality index assessment using critical path segment technique and interactive simulation, Construction Research Congress 2012, ASCE, 1094-1103. https://doi.org/10.1061/9780784412329.110
  • Wagh, H. B. (2017). Duration and quantity-based project control using time segments scheduling technique, Int. J. Sci. Technol. Manage. Res., 2(8), 1-4.
  • Wickwire, J. M. and Ockman, S. (2000). Industry crisis: Construction scheduling software, 2000 AACE International Transactions, CDR.02.1-CDR.02.8.
  • Zhang, L. and Zou, X. (2015). Repetitive Project Scheduling: Theory and Methods. Elsevier Inc, Amsterdam, Netherlands.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Civil Construction Engineering
Journal Section Research Articles
Authors

Gamze Yalçın 0000-0002-7078-9057

Savaş Bayram 0000-0002-0153-6750

Publication Date June 26, 2024
Submission Date November 23, 2023
Acceptance Date April 22, 2024
Published in Issue Year 2024 Issue: 23

Cite

APA Yalçın, G., & Bayram, S. (2024). Üstyapı Projelerinin Kritik Yol Segmentleri (CPS) ve Kritik Yol Metodu (CPM) ile Çizelgelenmesi: Bir Vaka Çalışması. Selçuk Üniversitesi Sosyal Ve Teknik Araştırmalar Dergisi(23), 1-20.

Selcuk University Journal of Social and Technical Researches is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).