Research Article
BibTex RIS Cite

INVESTIGATION THE EFFECT OF GEOGRAPHICAL ISOLATION ON COVİD-19 PANDEMIC IN TERMS OF ISLAND COUNTRIES

Year 2022, Volume: 3 Issue: 1, 34 - 49, 24.03.2022

Abstract

Contact monitoring and isolation are also highly important in the COVID-19 outbreak as in other outbreaks. In this study, it is aimed to analyze the geographical features of the island countries, which are separate from the mainland, in contact monitoring and isolation with data. The study comprises island countries. Analysis results show that there is a positive, significant correlation between the death/case rate and 65+ population (r= .332) (p<0.05). Regression analysis was used to reveal the effect of 65+ population and the total population on the death/case rate. The analysis results show that the model established for the effect of 65+ population on the death/case rate is statistically significant (F=4.214; p<0.05). It was determined that 65+ population has a positive effect on the death/case rate (β=0.302). In the model, the correlation coefficient of 65+ population to explain the death/case rate is 0.302. The effect of explaining the death/case rate is 9.1%. In terms of the total population, there is no statistical significance. Studies have shown that countries separate from the mainland and use the distinctive feature of their geographical features in contact monitoring and isolation have reduced or stopped the transmission rate of COVID-19 with the measures they have taken.

References

  • 1. Andersan, R. M., Heesterbeek, H., et al., 2020. How will country-based mitigation measures influence the course of the COVID-19 epidemic?, The Lancet, 395(10228), pp: 931-934. DOI:https://doi.org/10.1016/S0140-6736(20)30567-5.
  • 2. Bosch, B. J., Martina, et al., 2004. Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides, Proc Natl Acad Sci U S A., 101(22), pp: 8455–8460.
  • 3. Cascella, M., Rajnik, M., et al., R. D. 2020. Features, evaluation and treatment coronavirus (COVID-19) In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan–. 2020 Mar 8. Affiliations (https://www.ncbi.nlm.nih.gov/books/NBK554776/).
  • 4. Chan, M. C., Yeo S. K., Chonga, Y. L., Lee, Y. M. 2020. Stepping Forward: Urologists’ Efforts During the COVID-19 Outbreak in Singapore. Eur Urol. https://doi.org/10.1016/j.eururo.2020.03.004.
  • 5. Chowella, G., Fenimorea, et al., 2003. SARS outbreaks in Ontario, Hong Kong and Singapore: The role of diagnosis and isolation as a control mechanism, Journal of Theoretical Biology, 224(1), pp: 1-8. https://doi.org/10.1016/S0022-5193(03)00228-5.
  • 6. Fraser, C., Riley S., Anderson R. M. and Ferguson, N. M. 2004. Factors that make an infectious disease outbreak controllable. Proc Natl Acad Sci U S A. 101(16), pp: 6146–6151. doi: 10.1073/pnas.0307506101.
  • 7. Glasser, J. W., Hupert, N., McCauley, M. M. and Hatchett, R. 2011. Modeling and public health emergency responses: lessons from SARS, Epidemics 3, pp: 32–37.
  • 8. Groot, R. J., Baker, S. C., et al,. 2013. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the coronavirus study group, Journal of Virology, 87(14), pp: 7790 –7792. DOI: 10.1128 / JVI.01244-13.
  • 9. He, Z. 2020. What further should be done to control COVID-19 outbreaks in addition to cases isolation and contact tracing measures?, BMC Medicine, 80, pp: 1-3. https://doi.org/10.1186/s12916-020-01551-8.
  • 10. Hellewell, J., Abbott, S., et al., Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Funk, S. and Eggo, R. M. 2020. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts, Lancet Glob Health, 8, pp: e488–96. https://doi.org/10.1016/S2214-109X(20)30074-7.
  • 11. Heymann, D. L. and Shindo, N. 2020. COVID-19: what is next for public health?, The Lancet, 395(102224), pp: 542-545. DOI:https://doi.org/10.1016/S0140-6736(20)30374-3.
  • 12. Huang, C., Wang, Y., et al. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 2020 395, pp: 497–506. pii: S0140-6736(20)30183-5. doi:10.1016/S0140-6736(20)30183-5.
  • 13. Klinkenberg, D., Fraser, C.and Heesterbeek, H. 2006. The effectiveness of contact tracing in emerging epidemics. PLOS ONE 1(1), e12. doi:10.1371/journal.pone.0000012.
  • 14. Lee, V. J., Chiew, C. J. and Khong, W. X., 2020. Interrupting transmission of COVID-19: lessons from containment efforts in Singapore, Journal of Travel Medicine, 27(3). https://doi.org/10.1093/jtm/taaa039.
  • 15. Li, Q., Gua, X., et al., 2020. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia, The New England Journal Of Medicine, 382(13), pp: 1199- 1207. DOI: 10.1056/NEJMoa2001316.
  • 16. Lu, R., Zhao, X., et al., 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, The Lancet, 30. S0140-6736(20)30251-8. doi: 10.1016/S0140-6736(20)30251-8.
  • 17. Olu, O. O., Lamunu, M., et al., 2016. Contact tracing during an outbreak of ebola virus disease in the Western Area Districts of Sierra Leone: Lessons for future ebola outbreak response, Frontiers in Public Health, 4:130. doi: 10.3389/fpubh.2016.00130.
  • 18. Peak, C. M., Childs, et al., 2017. Comparing nonpharmaceutical interventions for containing emerging epidemics, Proc Natl Acad Sci U S A., 114(15), pp: 4023–4028. doi: 10.1073/pnas.1616438114.
  • 19. Wei, W. E., Li, Z., et al., 2020. Presymptomatic Transmission of SARS-CoV-2 — Singapore, January 23–March 16, 2020. MMWR Morb Mortal Wkly Rep.;69:411–415. doi: http://dx.doi.org/10.15585/mmwr.mm6914e1external icon.
  • 20. World Health Organization. 2020‎. Coronavirus disease 2019 (‎‎‎‎COVID-19)‎‎‎‎: situation report, 133. World Health Organization. https://apps.who.int/iris/handle/10665/332281.
  • 21. World Health Organization. 2020. WHO Director-General's remarks at the media briefing on 2019-nCoV on 11 February 2020. 2020. at https://www.who.int/dg/speeches/detail/whodirector-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020. Published February 11, 2020.
  • 22. www.cdc.gov (Centers for Disease Control and Prevention), 2020 (AD: 01.06.2020).
  • 23. Yan, X., Zou, Y. and Li, J. 2007. Optimal quarantine and isolation strategies in epidemics control. World Journal of Modelling and Simulation, 3 (3), pp: 202-211. ISSN 1 746-7233.
  • 24. Zheng, Y., MA, Y., Zhang, J. and Xie, X. 2020. COVID-19 and the cardiovascular system, Nature Reviews Cardiology, 17, pp: 259–260. https://doi.org/10.1038/s41569-020-0360-5.
  • 25. Zhou, P., Yang, X. L., et Al., 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, 579, pp: 270-273. https://doi.org/10.1038/s41586-020-2012-7.

COĞRAFİ İZOLASYONUN COVID-19 SALGIN SÜRECİNDEKİ ETKİSİNİN ADA ÜLKELERİ AÇISINDAN İNCELENMESİ

Year 2022, Volume: 3 Issue: 1, 34 - 49, 24.03.2022

Abstract

Diğer salgınlarda olduğu gibi COVID-19 salgınında da temas izleme ve izolasyon oldukça önemlidir. Bu çalışmada, anakaradan ayrı olan ada ülkelerinin coğrafi özelliklerinin temas izleme ve izolasyon halinde verilerle analiz edilmesi amaçlanmaktadır. Çalışma ada ülkelerini kapsamaktadır. Analiz sonuçları ölüm/vaka oranı ile 65+ nüfus (r= .332) arasında pozitif ve anlamlı bir ilişki olduğunu göstermektedir (p<0.05). 65+ nüfus ve toplam nüfusun ölüm/vaka hızı üzerindeki etkisini ortaya çıkarmak için regresyon analizi kullanıldı. Analiz sonuçları, 65+ popülasyonun ölüm/vaka oranı üzerindeki etkisi için kurulan modelin istatistiksel olarak anlamlı olduğunu göstermektedir (F=4.214; p<0.05). 65+ popülasyonun ölüm/vaka oranını olumlu etkilediği belirlendi (β=0,302). Modelde 65+ popülasyonun ölüm/vaka oranını açıklamaya yönelik korelasyon katsayısı 0.302'dir. Ölüm/vaka oranını açıklamanın etkisi %9.1'dir. Toplam nüfus açısından istatistiksel bir anlam ifade etmemektedir. Çalışmalar, anakaradan ayrı olan ve coğrafi özelliklerinin ayırt edici özelliğini temas izleme ve izolasyonda kullanan ülkelerin, aldıkları önlemlerle COVID-19 bulaşma oranını azalttığını veya durdurduğunu göstermiştir.

References

  • 1. Andersan, R. M., Heesterbeek, H., et al., 2020. How will country-based mitigation measures influence the course of the COVID-19 epidemic?, The Lancet, 395(10228), pp: 931-934. DOI:https://doi.org/10.1016/S0140-6736(20)30567-5.
  • 2. Bosch, B. J., Martina, et al., 2004. Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides, Proc Natl Acad Sci U S A., 101(22), pp: 8455–8460.
  • 3. Cascella, M., Rajnik, M., et al., R. D. 2020. Features, evaluation and treatment coronavirus (COVID-19) In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan–. 2020 Mar 8. Affiliations (https://www.ncbi.nlm.nih.gov/books/NBK554776/).
  • 4. Chan, M. C., Yeo S. K., Chonga, Y. L., Lee, Y. M. 2020. Stepping Forward: Urologists’ Efforts During the COVID-19 Outbreak in Singapore. Eur Urol. https://doi.org/10.1016/j.eururo.2020.03.004.
  • 5. Chowella, G., Fenimorea, et al., 2003. SARS outbreaks in Ontario, Hong Kong and Singapore: The role of diagnosis and isolation as a control mechanism, Journal of Theoretical Biology, 224(1), pp: 1-8. https://doi.org/10.1016/S0022-5193(03)00228-5.
  • 6. Fraser, C., Riley S., Anderson R. M. and Ferguson, N. M. 2004. Factors that make an infectious disease outbreak controllable. Proc Natl Acad Sci U S A. 101(16), pp: 6146–6151. doi: 10.1073/pnas.0307506101.
  • 7. Glasser, J. W., Hupert, N., McCauley, M. M. and Hatchett, R. 2011. Modeling and public health emergency responses: lessons from SARS, Epidemics 3, pp: 32–37.
  • 8. Groot, R. J., Baker, S. C., et al,. 2013. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the coronavirus study group, Journal of Virology, 87(14), pp: 7790 –7792. DOI: 10.1128 / JVI.01244-13.
  • 9. He, Z. 2020. What further should be done to control COVID-19 outbreaks in addition to cases isolation and contact tracing measures?, BMC Medicine, 80, pp: 1-3. https://doi.org/10.1186/s12916-020-01551-8.
  • 10. Hellewell, J., Abbott, S., et al., Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, Funk, S. and Eggo, R. M. 2020. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts, Lancet Glob Health, 8, pp: e488–96. https://doi.org/10.1016/S2214-109X(20)30074-7.
  • 11. Heymann, D. L. and Shindo, N. 2020. COVID-19: what is next for public health?, The Lancet, 395(102224), pp: 542-545. DOI:https://doi.org/10.1016/S0140-6736(20)30374-3.
  • 12. Huang, C., Wang, Y., et al. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 2020 395, pp: 497–506. pii: S0140-6736(20)30183-5. doi:10.1016/S0140-6736(20)30183-5.
  • 13. Klinkenberg, D., Fraser, C.and Heesterbeek, H. 2006. The effectiveness of contact tracing in emerging epidemics. PLOS ONE 1(1), e12. doi:10.1371/journal.pone.0000012.
  • 14. Lee, V. J., Chiew, C. J. and Khong, W. X., 2020. Interrupting transmission of COVID-19: lessons from containment efforts in Singapore, Journal of Travel Medicine, 27(3). https://doi.org/10.1093/jtm/taaa039.
  • 15. Li, Q., Gua, X., et al., 2020. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia, The New England Journal Of Medicine, 382(13), pp: 1199- 1207. DOI: 10.1056/NEJMoa2001316.
  • 16. Lu, R., Zhao, X., et al., 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, The Lancet, 30. S0140-6736(20)30251-8. doi: 10.1016/S0140-6736(20)30251-8.
  • 17. Olu, O. O., Lamunu, M., et al., 2016. Contact tracing during an outbreak of ebola virus disease in the Western Area Districts of Sierra Leone: Lessons for future ebola outbreak response, Frontiers in Public Health, 4:130. doi: 10.3389/fpubh.2016.00130.
  • 18. Peak, C. M., Childs, et al., 2017. Comparing nonpharmaceutical interventions for containing emerging epidemics, Proc Natl Acad Sci U S A., 114(15), pp: 4023–4028. doi: 10.1073/pnas.1616438114.
  • 19. Wei, W. E., Li, Z., et al., 2020. Presymptomatic Transmission of SARS-CoV-2 — Singapore, January 23–March 16, 2020. MMWR Morb Mortal Wkly Rep.;69:411–415. doi: http://dx.doi.org/10.15585/mmwr.mm6914e1external icon.
  • 20. World Health Organization. 2020‎. Coronavirus disease 2019 (‎‎‎‎COVID-19)‎‎‎‎: situation report, 133. World Health Organization. https://apps.who.int/iris/handle/10665/332281.
  • 21. World Health Organization. 2020. WHO Director-General's remarks at the media briefing on 2019-nCoV on 11 February 2020. 2020. at https://www.who.int/dg/speeches/detail/whodirector-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020. Published February 11, 2020.
  • 22. www.cdc.gov (Centers for Disease Control and Prevention), 2020 (AD: 01.06.2020).
  • 23. Yan, X., Zou, Y. and Li, J. 2007. Optimal quarantine and isolation strategies in epidemics control. World Journal of Modelling and Simulation, 3 (3), pp: 202-211. ISSN 1 746-7233.
  • 24. Zheng, Y., MA, Y., Zhang, J. and Xie, X. 2020. COVID-19 and the cardiovascular system, Nature Reviews Cardiology, 17, pp: 259–260. https://doi.org/10.1038/s41569-020-0360-5.
  • 25. Zhou, P., Yang, X. L., et Al., 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, 579, pp: 270-273. https://doi.org/10.1038/s41586-020-2012-7.
There are 25 citations in total.

Details

Primary Language English
Subjects Health Policy
Journal Section Research Articles
Authors

Burhanettin Uysal 0000-0003-2801-9726

Ebrar Ulusinan 0000-0002-1182-7578

Publication Date March 24, 2022
Submission Date December 4, 2021
Acceptance Date February 19, 2022
Published in Issue Year 2022 Volume: 3 Issue: 1

Cite

APA Uysal, B., & Ulusinan, E. (2022). INVESTIGATION THE EFFECT OF GEOGRAPHICAL ISOLATION ON COVİD-19 PANDEMIC IN TERMS OF ISLAND COUNTRIES. Selçuk Sağlık Dergisi, 3(1), 34-49.