Research Article
BibTex RIS Cite

Scenario-Based Tsunami Hazard Assessment For Java (Sunda) Trench Using Monte Carlo Simulations

Year 2019, Volume: 1 Issue: 1, 107 - 122, 30.06.2019

Abstract

Java
(Sunda) trench lying along the eastern and southern coasts of Indonesia is one
of the world's most active seismic zone. Java (Sunda) trench experienced
devastating earthquakes and tsunamis throughout history. Despite the fact
that about 14 years have passed since the 2004 Indian Ocean earthquake and
tsunami, the seismic activity in this region is still intense. Thus, reliable
estimation of the associated hazard of a possible large earthquake that can
generate tsunami is vital for designing early warning systems, site selection
of future critical infrastructures (CIs) and planning necessary mitigation
measures for existing CIs and critical regions (CRs). Therefore, Scenario-based
Tsunami Hazard Assessment (STHA) is performed for this region in this study.
Historical earthquake data is compiled using the ISC-GEM Global Instrumental
Earthquake Catalogue for the region. Monte Carlo (MC) simulation method is used
to generate random earthquake source parameters (i.e. magnitude, focal depth)
along Java (Sunda) trench. The worst-case scenario among MC runs is selected
and simulated using NAMI-DANCE tsunami simulation software. Critical Regions
(CRs) and Critical Infrastructures (CIs) are identified and spatial
distribution of the inundation levels along the eastern and southern coastline
of Sumatra and Java Islands, focusing on these CRs and CIs is determined. It is
observed that some of the CRs and CIs are vulnerable to potential high-risk
tsunamis. 

References

  • Yalciner, A., Pelinovsky, E., Talipova, T., Kurkin, A., Kozelkov, A., & Zaitsev, A. (2004). Tsunamis in the Black Sea: comparison of the historical, instrumental, and numerical data. Journal of Geophysical Research: Oceans, 109(C12).González, F. I., Geist, E. L., Jaffe, B., Kânoğlu, U., Mofjeld, H., Synolakis, C. E., ... & Horning, T. (2009). Probabilistic tsunami hazard assessment at seaside, Oregon, for near‐and far‐field seismic sources. Journal of Geophysical Research: Oceans, 114(C11).GTZ-GITEWS (2010a) Tsunami evacuation plan for Kelurahan Kuta, Bali: a documentation of the process and results of tsunami evacuation planning. http://www.gitews.org/tsunami-kit/en/id_tsunami_evacuation_map_kuta.htmlKnighton, J., & Bastidas, L. A. (2015). A proposed probabilistic seismic tsunami hazard analysis methodology. Natural Hazards, 78(1), 699-723.Strunz, G., Post, J., Zosseder, K., Wegscheider, S., Mück, M., Riedlinger, T., ... & Harjono, H. (2011). Tsunami risk assessment in Indonesia. Natural Hazards and Earth System Sciences, (11), 67-82.Hancilar, U. (2012). Identification of elements at risk for a credible tsunami event for Istanbul. Natural Hazards and Earth System Sciences, 12(1), 107.OYO International Co.: Simulation and Vulnerability Analysis of Tsunamis Affecting the Istanbul Coasts, Final Report to Istanbul Metropolitan Municipality, Directorate of Earthquake and Ground Investigation, Istanbul, 2007.Storchak, D. A., Di Giacomo, D., Bondár, I., Engdahl, E. R., Harris, J., Lee, W. H., ... & Bormann, P. (2013). Public release of the ISC–GEM global instrumental earthquake catalogue (1900–2009). Seismological Research Letters, 84(5), 810-815.Hanks, T. C. and H. Kanamori (1979). A moment-magnitude scale, J. Geophys. Res. 84, 2348-2350.Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84(4), 974-1002.Imamura, F. (1995). Tsunami numerical simulation with the staggered leap-frog scheme (numerical code of TUNAMI-N1 and N2). Disaster Control Research Center, Tohoku University, 33.Titov, V. V., & Gonzalez, F. I. (1997). Implementation and testing of the method of splitting tsunami (MOST) model.Yalciner, A. C., Pelinovsky, E., Zaytsev, A., Kurkin, A., Ozer, C., & Karakus, H. (2006). NAMI DANCE Manual. Middle East Technical University, Civil Engineering Department, Ocean Engineering Research Center, Ankara, Turkey, http://namidance. ce. metu.edu.tr/pdf/NAMIDANCE-version-5-9-manual. pdf.Segur, H. (2007). Waves in shallow water, with emphasis on the tsunami of 2004. In Tsunami and nonlinear waves (pp. 3-29). Springer Berlin Heidelberg.Løvholt, F., Glimsdal, S., Harbitz, C. B., Zamora, N., Nadim, F., Peduzzi, P., & Smebye, H. (2012). Tsunami hazard and exposure on the global scale. Earth-Science Reviews, 110(1-4), 58-73.Løvholt, F., Glimsdal, S., Harbitz, C. B., Horspool, N., Smebye, H., De Bono, A., & Nadim, F. (2014). Global tsunami hazard and exposure due to large co-seismic slip. International journal of disaster risk reduction, 10, 406-418.Synolakis, C. E. (1991). Green’s law and the evolution of solitary waves. Physics of Fluids A: Fluid Dynamics, 3(3), 490-491.

Monte Carlo Simülasyonu Kullanılarak Java (Sunda) Fay Hattı için Senaryo Bazlı Tsunami Tehlike Analizi

Year 2019, Volume: 1 Issue: 1, 107 - 122, 30.06.2019

Abstract

Endonezya’nın
doğu ve güney kıyıları boyunca uzanan Java (Sunda) fay hattı dünyadaki en aktif
sismik alanlardan biridir. Tarih boyunca Java (Sunda) fayında yıkıcı depremler
ve tsunamiler oluşmuştur. 2004 Hint Okyanusu depremi ve tsunamisinin üzerinden
14 yıl geçmiş olmasına rağmen bu bölgedeki sismik aktivite hala yoğun bir
şekilde devam etmektedir. Erken uyarı sistemlerinin yerleştirilmesi,
gelecekteki yapıların lokasyonlarının belirlenmesi ve mevcut kritik yapılar ve
bölgeler için risk azaltıcı önlemlerin alınması gibi konular için güvenilir bir
tsunami tehlike analizi yapılması hayati önem taşımaktadır. Bu kriterler göz
önüne alınarak bu çalışmada senaryo bazlı tsunami tehlike analizi (STHA)
çalışılmıştır. Tarihsel deprem verisi ISC-GEM Küresel Deprem Kataloğundan
derlenmiştir. Java (Sunda) fayı boyunca rastgele deprem verisi (magnitüt ve
fokal derinlik) üretmek için Monte Carlo (MC) simulasyonu kullanılmıştır.
Üretilen veriden en kötü senaryo seçilmiş ve NAMI-DANCE yazılımı kullanılarak
tsunami simulasyonu yapılmıştır. Belirli kritik bölgeler ve altyapılar için
tsunami dalga yükseklikleri belirlenmiş ve su altında kalan bölgeler ArcGIS
programı kullanılarak gösterilmiştir. Bazı kritik bölge ve altyapıların yüksek
seviyede risk potansiyeli taşıdığı belirlenmiştir.

References

  • Yalciner, A., Pelinovsky, E., Talipova, T., Kurkin, A., Kozelkov, A., & Zaitsev, A. (2004). Tsunamis in the Black Sea: comparison of the historical, instrumental, and numerical data. Journal of Geophysical Research: Oceans, 109(C12).González, F. I., Geist, E. L., Jaffe, B., Kânoğlu, U., Mofjeld, H., Synolakis, C. E., ... & Horning, T. (2009). Probabilistic tsunami hazard assessment at seaside, Oregon, for near‐and far‐field seismic sources. Journal of Geophysical Research: Oceans, 114(C11).GTZ-GITEWS (2010a) Tsunami evacuation plan for Kelurahan Kuta, Bali: a documentation of the process and results of tsunami evacuation planning. http://www.gitews.org/tsunami-kit/en/id_tsunami_evacuation_map_kuta.htmlKnighton, J., & Bastidas, L. A. (2015). A proposed probabilistic seismic tsunami hazard analysis methodology. Natural Hazards, 78(1), 699-723.Strunz, G., Post, J., Zosseder, K., Wegscheider, S., Mück, M., Riedlinger, T., ... & Harjono, H. (2011). Tsunami risk assessment in Indonesia. Natural Hazards and Earth System Sciences, (11), 67-82.Hancilar, U. (2012). Identification of elements at risk for a credible tsunami event for Istanbul. Natural Hazards and Earth System Sciences, 12(1), 107.OYO International Co.: Simulation and Vulnerability Analysis of Tsunamis Affecting the Istanbul Coasts, Final Report to Istanbul Metropolitan Municipality, Directorate of Earthquake and Ground Investigation, Istanbul, 2007.Storchak, D. A., Di Giacomo, D., Bondár, I., Engdahl, E. R., Harris, J., Lee, W. H., ... & Bormann, P. (2013). Public release of the ISC–GEM global instrumental earthquake catalogue (1900–2009). Seismological Research Letters, 84(5), 810-815.Hanks, T. C. and H. Kanamori (1979). A moment-magnitude scale, J. Geophys. Res. 84, 2348-2350.Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84(4), 974-1002.Imamura, F. (1995). Tsunami numerical simulation with the staggered leap-frog scheme (numerical code of TUNAMI-N1 and N2). Disaster Control Research Center, Tohoku University, 33.Titov, V. V., & Gonzalez, F. I. (1997). Implementation and testing of the method of splitting tsunami (MOST) model.Yalciner, A. C., Pelinovsky, E., Zaytsev, A., Kurkin, A., Ozer, C., & Karakus, H. (2006). NAMI DANCE Manual. Middle East Technical University, Civil Engineering Department, Ocean Engineering Research Center, Ankara, Turkey, http://namidance. ce. metu.edu.tr/pdf/NAMIDANCE-version-5-9-manual. pdf.Segur, H. (2007). Waves in shallow water, with emphasis on the tsunami of 2004. In Tsunami and nonlinear waves (pp. 3-29). Springer Berlin Heidelberg.Løvholt, F., Glimsdal, S., Harbitz, C. B., Zamora, N., Nadim, F., Peduzzi, P., & Smebye, H. (2012). Tsunami hazard and exposure on the global scale. Earth-Science Reviews, 110(1-4), 58-73.Løvholt, F., Glimsdal, S., Harbitz, C. B., Horspool, N., Smebye, H., De Bono, A., & Nadim, F. (2014). Global tsunami hazard and exposure due to large co-seismic slip. International journal of disaster risk reduction, 10, 406-418.Synolakis, C. E. (1991). Green’s law and the evolution of solitary waves. Physics of Fluids A: Fluid Dynamics, 3(3), 490-491.
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Cüneyt Yavuz 0000-0001-9767-7234

Publication Date June 30, 2019
Submission Date April 16, 2019
Acceptance Date June 20, 2019
Published in Issue Year 2019 Volume: 1 Issue: 1

Cite

APA Yavuz, C. (2019). Scenario-Based Tsunami Hazard Assessment For Java (Sunda) Trench Using Monte Carlo Simulations. Şırnak Üniversitesi Fen Bilimleri Dergisi, 1(1), 107-122.