Research Article
BibTex RIS Cite

Phase modulation of MoO2 -MoO3 nanostructured thin films through W-Doping; utilizing UV photodetection and gas sensing applications

Year 2022, Volume: 48 Issue: 1, 34 - 45, 25.04.2022
https://doi.org/10.35238/sufefd.1068674

Abstract

Gas sensing properties of metal oxide semiconductors draw high attention due to their simple fabricating methods, and low cost, chemical, and physical properties. In general, a high bandgap (>2 eV) can cause them to react in the UV region through the electromagnetic spectrum. Controlling the UV-photodetection and gas sensing ability of MoO2-MoO3 thin film through tungsten (W) doping of different ratios have been reported here. The preparation of these films was grown using a reactive magnetron sputtering system with different power sputtering of W-content. The bandgap calculations showed that the samples have a wide bandgap value. A small particle size of 8nm was observed through high W doping concentration which enhanced these materials toward high efficient gas sensing and UV photodetector applications. The UV optical sensor exhibits a high responsivity value of 2500A/W and an external quantum efficiency (EQE) value of 5x109 at 365nm. Also, an increase in the photocurrent gain value with increasing the W amount with a maximum value of 0.13, while a photocurrent of 1mA was observed. On the other hand, a fast-response/recovery time-based CO2 gas sensor of less than 10 sec was observed. The thin-film sensors showed well-defined adsorption and desorption kinetics in a CO2 environment with a p-type chemisorption behavior.

References

  • Akdaǧ, A., Budak, H. F., Yilmaz, M., Efe, A., Büyükaydin, M., Can, M., Turgut, G., & Sönmez, E. (2016). Structural and Morphological Properties of Al doped ZnO Nanoparticles. Journal of Physics: Conference Series, 707(1).
  • Bashiri, R., Samsudin, M. F. R., Mohamed, N. M., Suhaimi, N. A., Ling, L. Y., Sufian, S., & Kait, C. F. (2020). Influence of growth time on photoelectrical characteristics and photocatalytic hydrogen production of decorated Fe2O3 on TiO2 nanorod in photoelectrochemical cell. Applied Surface Science, 510, 145482.
  • Basyooni, M. A., Eker, Y. R., & Yilmaz, M. (2020). Structural, optical, electrical and room temperature gas sensing characterizations of spin coated multilayer cobalt-doped tin oxide thin films. Superlattices and Microstructures, 140, 106465.
  • Basyooni, M. A. M. A., Shaban, M., & El Sayed, A. M. A. M. (2017). Enhanced Gas Sensing Properties of Spin-coated Na-doped ZnO Nanostructured Films. Scientific Reports, 7(1).
  • Basyooni, M. A., Zaki, S. E., Ertugrul, S., Yilmaz, M., & Eker, Y. R. (2020). Fast response of CO2 room temperature gas sensor based on Mixed-Valence Phases in Molybdenum and Tungsten Oxide nanostructured thin films. Ceramics International.
  • Boström, M., Gemmi, M., Schnelle, W., & Eriksson, L. (2004). Synthesis, properties and structure determination of Nb2O 3(SO4)2·1/4H2O from neutron and synchrotron X-ray powder diffraction data. Journal of Solid State Chemistry, 177(4–5), 1738–1745.
  • Chao, C.-H., Weng, W.-J., & Wei, D.-H. (2016). Enhanced UV photodetector response and recovery times using a nonpolar ZnO sensing layer. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 34(2), 02D106.
  • Çiftyürek, E., Sabolsky, K., & Sabolsky, E. M. (2016). Molybdenum and tungsten oxide based gas sensors for high temperature detection of environmentally hazardous sulfur species. Sensors and Actuators, B: Chemical, 237, 262–274.
  • Çolak, H., & Karaköse, E. (2019). Synthesis and characterization of different dopant (Ge, Nd, W)-doped ZnO nanorods and their CO2 gas sensing applications. Sensors and Actuators, B: Chemical, 296.
  • CRC Handbook of Chemistry and Physics. 81st Edition Edited by David R. Lide (National Institute of Standards and Technology). CRC Press: Boca Raton, FL. 2000. 2556 pp. $129.95. ISBN 0-8493-0481-4. (2000). Journal of the American Chemical Society, 122(50), 12614–12614.
  • Das, S., Chen, H. Y., Penumatcha, A. V., & Appenzeller, J. (2013). High performance multilayer MoS2 transistors with scandium contacts. Nano Letters, 13(1), 100–105.
  • Ghosh, A., Zhang, C., Shi, S., & Zhang, H. (2019). High temperature CO2 sensing and its cross-sensitivity towards H2 and CO gas using calcium doped ZnO thin film coated langasite SAW sensor. Sensors and Actuators, B: Chemical, 301.
  • Görmez, A. E., Basyooni, M. A., Zaki, S. E., Eker, Y. R., Sönmez, E., & Yılmaz, M. (2020). Effect of in-/ex-situ annealing temperture on the optical, structural and gas sensing dynamics of CdS nanostructured thin films. Superlattices and Microstructures, 142, 106536.
  • Gurlo, A., Bârsan, N., Oprea, A., Sahm, M., Sahm, T., Weimar, U., Kim, Y. S., Hwang, I. S., Kim, S. J., Lee, C. Y., & Lee, J. H. (2004). An n- to p-type conductivity transition induced by oxygen adsorption on α-Fe2O3. Applied Physics Letters, 85(12), 2280–2282.
  • Haider, A. J., Shaker, S. S., & Mohammed, A. H. (2013). A study of morphological, optical and gas sensing properties for pure and Ag doped SnO2 prepared by pulsed laser deposition (PLD). Energy Procedia, 36, 776–787.
  • He, S., Li, W., Feng, L., & Yang, W. (2019). Rational interaction between the aimed gas and oxide surfaces enabling high-performance sensor: The case of acidic α-MoO3 nanorods for selective detection of triethylamine. Journal of Alloys and Compounds, 783, 574–582.
  • Hiruta, Y., Kitao, M., & Yamada, S. (1984). Absorption Bands of Electrochemically-Colored Films of WO3, MoO3and MocW1-cO3. Japanese Journal of Applied Physics, 23(12), 1624–1627.
  • Hsu, K. C., Fang, T. H., Hsiao, Y. J., & Chan, C. A. (2020). Highly response CO2 gas sensor based on Au-La2O3 doped SnO2 nanofibers. Materials Letters, 261.
  • Ingham, B., & Toney, M. F. (2013). X-ray diffraction for characterizing metallic films. In Metallic Films for Electronic, Optical and Magnetic Applications: Structure, Processing and Properties (pp. 3–38). Elsevier Ltd.
  • Jiang, W., Meng, L., Zhang, S., Chuai, X., Zhou, Z., Hu, C., Sun, P., Liu, F., Yan, X., & Lu, G. (2019). Design of highly sensitive and selective xylene gas sensor based on Ni-doped MoO3 nano-pompon. Sensors and Actuators, B: Chemical, 299.
  • Juang, F. R., & Chen, B. Y. (2020). Effect of adding ZHS microcubes on ZnO nanorods for CO2 gas sensing applications. Solid-State Electronics, 164.
  • Jung, G., Jeong, Y., Hong, Y., Wu, M., Hong, S., Shin, W., Park, J., Jang, D., & Lee, J. H. (2020). SO2 gas sensing characteristics of FET- and resistor-type gas sensors having WO3 as sensing material. Solid-State Electronics, 165.
  • Kim, B. S., Kim, T. M., Choi, M. S., Shim, H. S., & Kim, J. J. (2015). Fully vacuum-processed perovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers. Organic Electronics, 17, 102–106.
  • Kim, Y. S., Hwang, I. S., Kim, S. J., Lee, C. Y., & Lee, J. H. (2008). CuO nanowire gas sensors for air quality control in automotive cabin. Sensors and Actuators, B: Chemical, 135(1), 298–303.
  • Ko, P. J., Abderrahmane, A., Kim, N. H., & Sandhu, A. (2017). High-performance near-infrared photodetector based on nano-layered MoSe2. Semiconductor Science and Technology, 32(6), 065015.
  • Lee, C. C., Biring, S., Ren, S. J., Li, Y. Z., Li, M. Z., Al Amin, N. R., & Liu, S. W. (2019). Reduction of dark current density in organic ultraviolet photodetector by utilizing an electron blocking layer of TAPC doped with MoO3. Organic Electronics, 65, 150–155.
  • Li, Bin, Liu, J., Tian, S., Liu, B., Yang, X., Yu, Z., & Zhao, X. (2019). VO2-ZnO composite films with enhanced thermochromic properties for smart windows. Ceramics International.
  • Li, Bo, Song, H. Y., Deng, Z. P., Huo, L. H., & Gao, S. (2019). Novel sensitive amperometric hydrogen peroxide sensor using layered hierarchical porous Α-MoO3 and GO modified glass carbon electrode. Sensors and Actuators, B: Chemical, 288, 641–648.
  • Li, T., Zeng, W., Zhang, Y., & Hussain, S. (2015). Nanobelt-assembled nest-like MoO3 hierarchical structure: Hydrothermal synthesis and gas-sensing properties. Materials Letters, 160, 476–479.
  • Li, Z., Wang, W., Zhao, Z., Liu, X., & Song, P. (2017). Facile synthesis and enhanced trimethylamine sensing performances of W-doped MoO 3 nanobelts. Materials Science in Semiconductor Processing, 66, 33–38. Liu, X., Gu, L., Zhang, Q., Wu, J., Long, Y., & Fan, Z. (2014). All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nature Communications, 5.
  • Ma, Z. H., Yu, R. T., & Song, J. M. (2019). Facile synthesis of Pr-doped In2O3 nanoparticles and their high gas sensing performance for ethanol. Sensors and Actuators, B: Chemical.
  • Mane, A. A., & Moholkar, A. V. (2018). Palladium (Pd) sensitized molybdenum trioxide (MoO3) nanobelts for nitrogen dioxide (NO2) gas detection. Solid-State Electronics, 139, 21–30.
  • Mo, Y., Tan, Z., Sun, L., Lu, Y., & Liu, X. (2020). Ethanol-sensing properties of α-MoO3 nanobelts synthesized by hydrothermal method. Journal of Alloys and Compounds, 812.
  • Mohamed, M. M., Salama, T. M., Morsy, M., Shahba, R. M. A., & Mohamed, S. H. (2019). Facile strategy of synthesizing Α-MoO3−x nanorods boosted as traced by 1% graphene oxide: Efficient visible light photocatalysis and gas sensing applications. Sensors and Actuators, B: Chemical, 299.
  • Pal, S., Mukherjee, S., Nand, M., Srivastava, H., Mukherjee, C., Jha, S. N., & Ray, S. K. (2020). Si compatible MoO3/MoS2 core-shell quantum dots for wavelength tunable photodetection in wide visible range. Applied Surface Science, 502.
  • Park, W. H., Lee, G. N., & Kim, J. (2018). Reactive-sputtered transparent MoO3 film for high-performing infrared Si photoelectric devices. Sensors and Actuators, A: Physical, 271, 251–256.
  • Patterson, A. L. (1939). The scherrer formula for X-ray particle size determination. Physical Review, 56(10), 978–982. Reddy, M. S. P., Kim, B.-J., & Jang, J.-S. (2014). Dual detection of ultraviolet and visible lights using a DNA-CTMA/GaN photodiode with electrically different polarity. Optics Express, 22(1), 908.
  • Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Physics of Condensed Matter, 192(1–2), 55–69.
  • Saenz, G. A., Karapetrov, G., Curtis, J., & Kaul, A. B. (2018). Ultra-high photoresponsivity in suspended metal-semiconductor-metal mesoscopic multilayer MoS 2 broadband detector from UV-to-IR with low schottky barrier contacts. Scientific Reports, 8(1).
  • Schirmer, O. F., Wittwer, V., Baur, G., & Brandt, G. (1977). Dependence of WO3 Electrochromic Absorption on Crystallinity. Journal of the Electrochemical Society, 124(5), 749–753.
  • Shaban, M., Attia, G. F., Basyooni, M. A., & Hamdy, H. (2014). Synthesis and characterization of Tin oxide thin film, effect of annealing on multilayer film. In L. Elnai & R. Mawad (Eds.), J. Modern Trends in Phys. R (Vol. 14).
  • Shaban, M., Attia, G. F., Basyooni, M. A., & Hamdy, H. (2015). Morphological and Structural Properties of spin coated Tin Oxide thin films. International Journal of Engineering and Advanced Research Technology (IJEART), 1(3), 11–14. www.ijeart.com
  • Shafieyan, A. R., Ranjbar, M., & Kameli, P. (2019). Localized surface plasmon resonance H2 detection by MoO3 colloidal nanoparticles fabricated by the flame synthesis method. International Journal of Hydrogen Energy, 44(33), 18628–18638.
  • Sun, Q. J., Xu, Z., Zhao, S. L., Zhang, F. J., Gao, L. Y., & Wang, Y. S. (2010). The performance improvement in pentacene organic thin film transistors by inserting C60/MoO3 ultrathin layers. Synthetic Metals, 160(21–22), 2239–2243.
  • Tanvir, N. Bin, Wilbertz, C., Steinhauer, S., Köck, A., Urban, G., & Yurchenko, O. (2015). Work Function Based CO2 Gas Sensing Using Metal Oxide Nanoparticles at Room Temperature. Materials Today: Proceedings.
  • Tanvir, N. B., Yurchenko, O., Laubender, E., & Urban, G. (2017). Investigation of low temperature effects on work function based CO2 gas sensing of nanoparticulate CuO films. Sensors and Actuators, B: Chemical, 247, 968–974. Taurino, A., Catalano, M., Rella, R., Siciliano, P., & Wlodarski, W. (2003). Structural and optical properties of molybdenum–tungsten mixed oxide thin films deposited by the sol-gel technique. Journal of Applied Physics, 93(7), 3816–3822.
  • Touihri, S., Arfaoui, A., Tarchouna, Y., Labidi, A., Amlouk, M., & Bernede, J. C. (2017). Annealing effect on physical properties of evaporated molybdenum oxide thin films for ethanol sensing. Applied Surface Science, 394, 414–424.
  • Wang, C., Liu, J., Yang, Q., Sun, P., Gao, Y., Liu, F., Zheng, J., & Lu, G. (2015). Ultrasensitive and low detection limit of acetone gas sensor based on W-doped NiO hierarchical nanostructure. Sensors and Actuators, B: Chemical, 220, 59–67.
  • Wei, Q., Song, P., Li, Z., Yang, Z., & Wang, Q. (2019). Enhanced triethylamine sensing performance of MoO 3 nanobelts by RuO 2 nanoparticles decoration. Vacuum, 162, 85–91.
  • Wei, Z., Hai, Z., Akbari, M. K., Qi, D., Xing, K., Zhao, Q., Verpoort, F., Hu, J., Hyde, L., & Zhuiykov, S. (2018). Atomic layer deposition-developed two-dimensional Α-MoO3 windows excellent hydrogen peroxide electrochemical sensing capabilities. Sensors and Actuators, B: Chemical, 262, 334–344.
  • Wu, J. M., & Chang, W. E. (2014). Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire. ACS Applied Materials and Interfaces, 6(16), 14286–14292.
  • Xu, J., Shen, Y., Wang, C., Dai, J., Tai, Y., Ye, Y., Shen, R., Wang, H., & Zachariah, M. R. (2019). Controlling the energetic characteristics of micro energy storage device by in situ deposition Al/MoO3 nanolaminates with varying internal structure. Chemical Engineering Journal, 373, 345–354.
  • Yang, S., Lei, G., Lan, Z., Xie, W., Yang, B., Xu, H., Wang, Z., & Gu, H. (2019). Enhancement of the room-temperature hydrogen sensing performance of MoO 3 nanoribbons annealed in a reducing gas. International Journal of Hydrogen Energy, 44(14), 7725–7733.
  • Yang, Y., Huo, N., & Li, J. (2017). Sensitized monolayer MoS2 phototransistors with ultrahigh responsivity. Journal of Materials Chemistry C, 5(44), 11614–11619.
  • Yeh, T. H., Lee, C. C., Shih, C. J., Kumar, G., Biring, S., & Liu, S. W. (2018). Vacuum-deposited MoO3/Ag/WO3 multilayered electrode for highly efficient transparent and inverted organic light-emitting diodes. Organic Electronics: Physics, Materials, Applications, 59, 266–271.
  • Yue, H. Y., Zhang, H. J., Huang, S., Lu, X. X., Gao, X., Song, S. S., Wang, Z., Wang, W. Q., & Guan, E. H. (2020). Highly sensitive and selective dopamine biosensor using Au nanoparticles-ZnO nanocone arrays/graphene foam electrode. Materials Science and Engineering C, 108.
  • Zaki, S. E., Basyooni, M. A., Shaban, M., Rabia, M., Eker, Y. R., Attia, G. F., Yilmaz, M., & Ahmed, A. M. (2019). Role of oxygen vacancies in vanadium oxide and oxygen functional groups in graphene oxide for room temperature CO 2 gas sensors. Sensors and Actuators, A: Physical, 294, 17–24.
  • Zeb, S., Peng, X., Yuan, G., Zhao, X., Qin, C., Sun, G., Nie, Y., Cui, Y., & Jiang, X. (2019). Controllable synthesis of ultrathin WO3 nanotubes and nanowires with excellent gas sensing performance. Sensors and Actuators, B: Chemical.
  • Zhao, C., Liang, Z., Su, M., Liu, P., Mai, W., & Xie, W. (2015). Self-Powered, High-Speed and Visible–Near Infrared Response of MoO 3– x /n-Si Heterojunction Photodetector with Enhanced Performance by Interfacial Engineering. ACS Applied Materials & Interfaces, 7(46), 25981–25990.
  • Zheng, Q., Huang, J., Cao, S., & Gao, H. (2015). A flexible ultraviolet photodetector based on single crystalline MoO3 nanosheets. Journal of Materials Chemistry C, 3(28), 7469–7475.
  • Zhuo, R., Wang, Y., Wu, D., Lou, Z., Shi, Z., Xu, T., Xu, J., Tian, Y., & Li, X. (2018). High-performance self-powered deep ultraviolet photodetector based on MoS2/GaN p-n heterojunction. Journal of Materials Chemistry C, 6(2), 299–303.
  • Zsigmondy, R., & Scherrer, P. (1912). Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. In Kolloidchemie Ein Lehrbuch (pp. 387–409). Springer Berlin Heidelberg.

MoO2-MoO3 Nanoyapılı İnce Filmlerin W-Doping Yoluyla Faz Modülasyonu; UV Foto ve Gaz Algılama Uygulamalarını Kullanma

Year 2022, Volume: 48 Issue: 1, 34 - 45, 25.04.2022
https://doi.org/10.35238/sufefd.1068674

Abstract

Metal oksit yarı iletkenlerin gaz algılama özellikleri, basit üretim yöntemleri ve düşük maliyeti, kimyasal ve fiziksel özellikleri nedeniyle büyük ilgi görmektedir. Genel olarak, yüksek bir bant aralığı (>2 eV), elektromanyetik spektrum yoluyla UV bölgesinde reaksiyona girmelerine neden olabilir. Farklı oranlarda tungsten (W) dopingi yoluyla MoO2-MoO3 ince filmin UV foto algılama ve gaz algılama yeteneğinin kontrol edilmesi burada rapor edilmiştir. Bu filmlerin hazırlanması, W içeriğinin farklı güç püskürtmeli reaktif magnetron püskürtme sistemi kullanılarak büyütüldü. Bant aralığı hesaplamaları, örneklerin geniş bir bant aralığı değerine sahip olduğunu göstermiştir. Bu malzemeleri yüksek verimli gaz algılama ve UV fotodetektör uygulamalarına doğru geliştiren yüksek W katkı konsantrasyonu yoluyla 8 nm'lik küçük bir parçacık boyutu gözlemlendi. UV optik sensör, 365nm'de 2500A/W'lik yüksek bir duyarlılık değeri ve 5x109'luk bir harici kuantum verimliliği (EQE) değeri sergiler. Ayrıca, 1mA'lık bir fotoakım olurken, maksimum 0.13 değerinde W miktarı arttıkça fotoakım kazanç değerinde bir artış gözlemlendi. Öte yandan, 10 saniyeden kısa bir hızlı yanıt/kurtarma süresine dayalı CO2 gaz sensörü gözlendi. İnce film sensörleri, p-tipi kimyasal adsorpsiyon davranışına sahip bir CO2 ortamında iyi tanımlanmış adsorpsiyon ve desorpsiyon kinetiği gösterdi.

References

  • Akdaǧ, A., Budak, H. F., Yilmaz, M., Efe, A., Büyükaydin, M., Can, M., Turgut, G., & Sönmez, E. (2016). Structural and Morphological Properties of Al doped ZnO Nanoparticles. Journal of Physics: Conference Series, 707(1).
  • Bashiri, R., Samsudin, M. F. R., Mohamed, N. M., Suhaimi, N. A., Ling, L. Y., Sufian, S., & Kait, C. F. (2020). Influence of growth time on photoelectrical characteristics and photocatalytic hydrogen production of decorated Fe2O3 on TiO2 nanorod in photoelectrochemical cell. Applied Surface Science, 510, 145482.
  • Basyooni, M. A., Eker, Y. R., & Yilmaz, M. (2020). Structural, optical, electrical and room temperature gas sensing characterizations of spin coated multilayer cobalt-doped tin oxide thin films. Superlattices and Microstructures, 140, 106465.
  • Basyooni, M. A. M. A., Shaban, M., & El Sayed, A. M. A. M. (2017). Enhanced Gas Sensing Properties of Spin-coated Na-doped ZnO Nanostructured Films. Scientific Reports, 7(1).
  • Basyooni, M. A., Zaki, S. E., Ertugrul, S., Yilmaz, M., & Eker, Y. R. (2020). Fast response of CO2 room temperature gas sensor based on Mixed-Valence Phases in Molybdenum and Tungsten Oxide nanostructured thin films. Ceramics International.
  • Boström, M., Gemmi, M., Schnelle, W., & Eriksson, L. (2004). Synthesis, properties and structure determination of Nb2O 3(SO4)2·1/4H2O from neutron and synchrotron X-ray powder diffraction data. Journal of Solid State Chemistry, 177(4–5), 1738–1745.
  • Chao, C.-H., Weng, W.-J., & Wei, D.-H. (2016). Enhanced UV photodetector response and recovery times using a nonpolar ZnO sensing layer. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 34(2), 02D106.
  • Çiftyürek, E., Sabolsky, K., & Sabolsky, E. M. (2016). Molybdenum and tungsten oxide based gas sensors for high temperature detection of environmentally hazardous sulfur species. Sensors and Actuators, B: Chemical, 237, 262–274.
  • Çolak, H., & Karaköse, E. (2019). Synthesis and characterization of different dopant (Ge, Nd, W)-doped ZnO nanorods and their CO2 gas sensing applications. Sensors and Actuators, B: Chemical, 296.
  • CRC Handbook of Chemistry and Physics. 81st Edition Edited by David R. Lide (National Institute of Standards and Technology). CRC Press: Boca Raton, FL. 2000. 2556 pp. $129.95. ISBN 0-8493-0481-4. (2000). Journal of the American Chemical Society, 122(50), 12614–12614.
  • Das, S., Chen, H. Y., Penumatcha, A. V., & Appenzeller, J. (2013). High performance multilayer MoS2 transistors with scandium contacts. Nano Letters, 13(1), 100–105.
  • Ghosh, A., Zhang, C., Shi, S., & Zhang, H. (2019). High temperature CO2 sensing and its cross-sensitivity towards H2 and CO gas using calcium doped ZnO thin film coated langasite SAW sensor. Sensors and Actuators, B: Chemical, 301.
  • Görmez, A. E., Basyooni, M. A., Zaki, S. E., Eker, Y. R., Sönmez, E., & Yılmaz, M. (2020). Effect of in-/ex-situ annealing temperture on the optical, structural and gas sensing dynamics of CdS nanostructured thin films. Superlattices and Microstructures, 142, 106536.
  • Gurlo, A., Bârsan, N., Oprea, A., Sahm, M., Sahm, T., Weimar, U., Kim, Y. S., Hwang, I. S., Kim, S. J., Lee, C. Y., & Lee, J. H. (2004). An n- to p-type conductivity transition induced by oxygen adsorption on α-Fe2O3. Applied Physics Letters, 85(12), 2280–2282.
  • Haider, A. J., Shaker, S. S., & Mohammed, A. H. (2013). A study of morphological, optical and gas sensing properties for pure and Ag doped SnO2 prepared by pulsed laser deposition (PLD). Energy Procedia, 36, 776–787.
  • He, S., Li, W., Feng, L., & Yang, W. (2019). Rational interaction between the aimed gas and oxide surfaces enabling high-performance sensor: The case of acidic α-MoO3 nanorods for selective detection of triethylamine. Journal of Alloys and Compounds, 783, 574–582.
  • Hiruta, Y., Kitao, M., & Yamada, S. (1984). Absorption Bands of Electrochemically-Colored Films of WO3, MoO3and MocW1-cO3. Japanese Journal of Applied Physics, 23(12), 1624–1627.
  • Hsu, K. C., Fang, T. H., Hsiao, Y. J., & Chan, C. A. (2020). Highly response CO2 gas sensor based on Au-La2O3 doped SnO2 nanofibers. Materials Letters, 261.
  • Ingham, B., & Toney, M. F. (2013). X-ray diffraction for characterizing metallic films. In Metallic Films for Electronic, Optical and Magnetic Applications: Structure, Processing and Properties (pp. 3–38). Elsevier Ltd.
  • Jiang, W., Meng, L., Zhang, S., Chuai, X., Zhou, Z., Hu, C., Sun, P., Liu, F., Yan, X., & Lu, G. (2019). Design of highly sensitive and selective xylene gas sensor based on Ni-doped MoO3 nano-pompon. Sensors and Actuators, B: Chemical, 299.
  • Juang, F. R., & Chen, B. Y. (2020). Effect of adding ZHS microcubes on ZnO nanorods for CO2 gas sensing applications. Solid-State Electronics, 164.
  • Jung, G., Jeong, Y., Hong, Y., Wu, M., Hong, S., Shin, W., Park, J., Jang, D., & Lee, J. H. (2020). SO2 gas sensing characteristics of FET- and resistor-type gas sensors having WO3 as sensing material. Solid-State Electronics, 165.
  • Kim, B. S., Kim, T. M., Choi, M. S., Shim, H. S., & Kim, J. J. (2015). Fully vacuum-processed perovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers. Organic Electronics, 17, 102–106.
  • Kim, Y. S., Hwang, I. S., Kim, S. J., Lee, C. Y., & Lee, J. H. (2008). CuO nanowire gas sensors for air quality control in automotive cabin. Sensors and Actuators, B: Chemical, 135(1), 298–303.
  • Ko, P. J., Abderrahmane, A., Kim, N. H., & Sandhu, A. (2017). High-performance near-infrared photodetector based on nano-layered MoSe2. Semiconductor Science and Technology, 32(6), 065015.
  • Lee, C. C., Biring, S., Ren, S. J., Li, Y. Z., Li, M. Z., Al Amin, N. R., & Liu, S. W. (2019). Reduction of dark current density in organic ultraviolet photodetector by utilizing an electron blocking layer of TAPC doped with MoO3. Organic Electronics, 65, 150–155.
  • Li, Bin, Liu, J., Tian, S., Liu, B., Yang, X., Yu, Z., & Zhao, X. (2019). VO2-ZnO composite films with enhanced thermochromic properties for smart windows. Ceramics International.
  • Li, Bo, Song, H. Y., Deng, Z. P., Huo, L. H., & Gao, S. (2019). Novel sensitive amperometric hydrogen peroxide sensor using layered hierarchical porous Α-MoO3 and GO modified glass carbon electrode. Sensors and Actuators, B: Chemical, 288, 641–648.
  • Li, T., Zeng, W., Zhang, Y., & Hussain, S. (2015). Nanobelt-assembled nest-like MoO3 hierarchical structure: Hydrothermal synthesis and gas-sensing properties. Materials Letters, 160, 476–479.
  • Li, Z., Wang, W., Zhao, Z., Liu, X., & Song, P. (2017). Facile synthesis and enhanced trimethylamine sensing performances of W-doped MoO 3 nanobelts. Materials Science in Semiconductor Processing, 66, 33–38. Liu, X., Gu, L., Zhang, Q., Wu, J., Long, Y., & Fan, Z. (2014). All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nature Communications, 5.
  • Ma, Z. H., Yu, R. T., & Song, J. M. (2019). Facile synthesis of Pr-doped In2O3 nanoparticles and their high gas sensing performance for ethanol. Sensors and Actuators, B: Chemical.
  • Mane, A. A., & Moholkar, A. V. (2018). Palladium (Pd) sensitized molybdenum trioxide (MoO3) nanobelts for nitrogen dioxide (NO2) gas detection. Solid-State Electronics, 139, 21–30.
  • Mo, Y., Tan, Z., Sun, L., Lu, Y., & Liu, X. (2020). Ethanol-sensing properties of α-MoO3 nanobelts synthesized by hydrothermal method. Journal of Alloys and Compounds, 812.
  • Mohamed, M. M., Salama, T. M., Morsy, M., Shahba, R. M. A., & Mohamed, S. H. (2019). Facile strategy of synthesizing Α-MoO3−x nanorods boosted as traced by 1% graphene oxide: Efficient visible light photocatalysis and gas sensing applications. Sensors and Actuators, B: Chemical, 299.
  • Pal, S., Mukherjee, S., Nand, M., Srivastava, H., Mukherjee, C., Jha, S. N., & Ray, S. K. (2020). Si compatible MoO3/MoS2 core-shell quantum dots for wavelength tunable photodetection in wide visible range. Applied Surface Science, 502.
  • Park, W. H., Lee, G. N., & Kim, J. (2018). Reactive-sputtered transparent MoO3 film for high-performing infrared Si photoelectric devices. Sensors and Actuators, A: Physical, 271, 251–256.
  • Patterson, A. L. (1939). The scherrer formula for X-ray particle size determination. Physical Review, 56(10), 978–982. Reddy, M. S. P., Kim, B.-J., & Jang, J.-S. (2014). Dual detection of ultraviolet and visible lights using a DNA-CTMA/GaN photodiode with electrically different polarity. Optics Express, 22(1), 908.
  • Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Physics of Condensed Matter, 192(1–2), 55–69.
  • Saenz, G. A., Karapetrov, G., Curtis, J., & Kaul, A. B. (2018). Ultra-high photoresponsivity in suspended metal-semiconductor-metal mesoscopic multilayer MoS 2 broadband detector from UV-to-IR with low schottky barrier contacts. Scientific Reports, 8(1).
  • Schirmer, O. F., Wittwer, V., Baur, G., & Brandt, G. (1977). Dependence of WO3 Electrochromic Absorption on Crystallinity. Journal of the Electrochemical Society, 124(5), 749–753.
  • Shaban, M., Attia, G. F., Basyooni, M. A., & Hamdy, H. (2014). Synthesis and characterization of Tin oxide thin film, effect of annealing on multilayer film. In L. Elnai & R. Mawad (Eds.), J. Modern Trends in Phys. R (Vol. 14).
  • Shaban, M., Attia, G. F., Basyooni, M. A., & Hamdy, H. (2015). Morphological and Structural Properties of spin coated Tin Oxide thin films. International Journal of Engineering and Advanced Research Technology (IJEART), 1(3), 11–14. www.ijeart.com
  • Shafieyan, A. R., Ranjbar, M., & Kameli, P. (2019). Localized surface plasmon resonance H2 detection by MoO3 colloidal nanoparticles fabricated by the flame synthesis method. International Journal of Hydrogen Energy, 44(33), 18628–18638.
  • Sun, Q. J., Xu, Z., Zhao, S. L., Zhang, F. J., Gao, L. Y., & Wang, Y. S. (2010). The performance improvement in pentacene organic thin film transistors by inserting C60/MoO3 ultrathin layers. Synthetic Metals, 160(21–22), 2239–2243.
  • Tanvir, N. Bin, Wilbertz, C., Steinhauer, S., Köck, A., Urban, G., & Yurchenko, O. (2015). Work Function Based CO2 Gas Sensing Using Metal Oxide Nanoparticles at Room Temperature. Materials Today: Proceedings.
  • Tanvir, N. B., Yurchenko, O., Laubender, E., & Urban, G. (2017). Investigation of low temperature effects on work function based CO2 gas sensing of nanoparticulate CuO films. Sensors and Actuators, B: Chemical, 247, 968–974. Taurino, A., Catalano, M., Rella, R., Siciliano, P., & Wlodarski, W. (2003). Structural and optical properties of molybdenum–tungsten mixed oxide thin films deposited by the sol-gel technique. Journal of Applied Physics, 93(7), 3816–3822.
  • Touihri, S., Arfaoui, A., Tarchouna, Y., Labidi, A., Amlouk, M., & Bernede, J. C. (2017). Annealing effect on physical properties of evaporated molybdenum oxide thin films for ethanol sensing. Applied Surface Science, 394, 414–424.
  • Wang, C., Liu, J., Yang, Q., Sun, P., Gao, Y., Liu, F., Zheng, J., & Lu, G. (2015). Ultrasensitive and low detection limit of acetone gas sensor based on W-doped NiO hierarchical nanostructure. Sensors and Actuators, B: Chemical, 220, 59–67.
  • Wei, Q., Song, P., Li, Z., Yang, Z., & Wang, Q. (2019). Enhanced triethylamine sensing performance of MoO 3 nanobelts by RuO 2 nanoparticles decoration. Vacuum, 162, 85–91.
  • Wei, Z., Hai, Z., Akbari, M. K., Qi, D., Xing, K., Zhao, Q., Verpoort, F., Hu, J., Hyde, L., & Zhuiykov, S. (2018). Atomic layer deposition-developed two-dimensional Α-MoO3 windows excellent hydrogen peroxide electrochemical sensing capabilities. Sensors and Actuators, B: Chemical, 262, 334–344.
  • Wu, J. M., & Chang, W. E. (2014). Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire. ACS Applied Materials and Interfaces, 6(16), 14286–14292.
  • Xu, J., Shen, Y., Wang, C., Dai, J., Tai, Y., Ye, Y., Shen, R., Wang, H., & Zachariah, M. R. (2019). Controlling the energetic characteristics of micro energy storage device by in situ deposition Al/MoO3 nanolaminates with varying internal structure. Chemical Engineering Journal, 373, 345–354.
  • Yang, S., Lei, G., Lan, Z., Xie, W., Yang, B., Xu, H., Wang, Z., & Gu, H. (2019). Enhancement of the room-temperature hydrogen sensing performance of MoO 3 nanoribbons annealed in a reducing gas. International Journal of Hydrogen Energy, 44(14), 7725–7733.
  • Yang, Y., Huo, N., & Li, J. (2017). Sensitized monolayer MoS2 phototransistors with ultrahigh responsivity. Journal of Materials Chemistry C, 5(44), 11614–11619.
  • Yeh, T. H., Lee, C. C., Shih, C. J., Kumar, G., Biring, S., & Liu, S. W. (2018). Vacuum-deposited MoO3/Ag/WO3 multilayered electrode for highly efficient transparent and inverted organic light-emitting diodes. Organic Electronics: Physics, Materials, Applications, 59, 266–271.
  • Yue, H. Y., Zhang, H. J., Huang, S., Lu, X. X., Gao, X., Song, S. S., Wang, Z., Wang, W. Q., & Guan, E. H. (2020). Highly sensitive and selective dopamine biosensor using Au nanoparticles-ZnO nanocone arrays/graphene foam electrode. Materials Science and Engineering C, 108.
  • Zaki, S. E., Basyooni, M. A., Shaban, M., Rabia, M., Eker, Y. R., Attia, G. F., Yilmaz, M., & Ahmed, A. M. (2019). Role of oxygen vacancies in vanadium oxide and oxygen functional groups in graphene oxide for room temperature CO 2 gas sensors. Sensors and Actuators, A: Physical, 294, 17–24.
  • Zeb, S., Peng, X., Yuan, G., Zhao, X., Qin, C., Sun, G., Nie, Y., Cui, Y., & Jiang, X. (2019). Controllable synthesis of ultrathin WO3 nanotubes and nanowires with excellent gas sensing performance. Sensors and Actuators, B: Chemical.
  • Zhao, C., Liang, Z., Su, M., Liu, P., Mai, W., & Xie, W. (2015). Self-Powered, High-Speed and Visible–Near Infrared Response of MoO 3– x /n-Si Heterojunction Photodetector with Enhanced Performance by Interfacial Engineering. ACS Applied Materials & Interfaces, 7(46), 25981–25990.
  • Zheng, Q., Huang, J., Cao, S., & Gao, H. (2015). A flexible ultraviolet photodetector based on single crystalline MoO3 nanosheets. Journal of Materials Chemistry C, 3(28), 7469–7475.
  • Zhuo, R., Wang, Y., Wu, D., Lou, Z., Shi, Z., Xu, T., Xu, J., Tian, Y., & Li, X. (2018). High-performance self-powered deep ultraviolet photodetector based on MoS2/GaN p-n heterojunction. Journal of Materials Chemistry C, 6(2), 299–303.
  • Zsigmondy, R., & Scherrer, P. (1912). Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. In Kolloidchemie Ein Lehrbuch (pp. 387–409). Springer Berlin Heidelberg.
There are 62 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Shrouk E. Zaki 0000-0002-5097-1070

Mustafa Buyukharman This is me 0000-0002-9111-0904

Mohamed A. Basyooni 0000-0001-8473-8253

Arife Efe Görmez This is me 0000-0001-6134-7487

Ayşegül Sezgin This is me 0000-0003-3933-4748

Yasin Eker 0000-0001-7395-4364

Mücahit Yılmaz 0000-0002-3387-5095

Publication Date April 25, 2022
Submission Date February 19, 2022
Published in Issue Year 2022 Volume: 48 Issue: 1

Cite

APA Zaki, S. E., Buyukharman, M., Basyooni, M. A., Görmez, A. E., et al. (2022). Phase modulation of MoO2 -MoO3 nanostructured thin films through W-Doping; utilizing UV photodetection and gas sensing applications. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 48(1), 34-45. https://doi.org/10.35238/sufefd.1068674
AMA Zaki SE, Buyukharman M, Basyooni MA, Görmez AE, Sezgin A, Eker Y, Yılmaz M. Phase modulation of MoO2 -MoO3 nanostructured thin films through W-Doping; utilizing UV photodetection and gas sensing applications. sufefd. April 2022;48(1):34-45. doi:10.35238/sufefd.1068674
Chicago Zaki, Shrouk E., Mustafa Buyukharman, Mohamed A. Basyooni, Arife Efe Görmez, Ayşegül Sezgin, Yasin Eker, and Mücahit Yılmaz. “Phase Modulation of MoO2 -MoO3 Nanostructured Thin Films through W-Doping; Utilizing UV Photodetection and Gas Sensing Applications”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 48, no. 1 (April 2022): 34-45. https://doi.org/10.35238/sufefd.1068674.
EndNote Zaki SE, Buyukharman M, Basyooni MA, Görmez AE, Sezgin A, Eker Y, Yılmaz M (April 1, 2022) Phase modulation of MoO2 -MoO3 nanostructured thin films through W-Doping; utilizing UV photodetection and gas sensing applications. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 48 1 34–45.
IEEE S. E. Zaki, M. Buyukharman, M. A. Basyooni, A. E. Görmez, A. Sezgin, Y. Eker, and M. Yılmaz, “Phase modulation of MoO2 -MoO3 nanostructured thin films through W-Doping; utilizing UV photodetection and gas sensing applications”, sufefd, vol. 48, no. 1, pp. 34–45, 2022, doi: 10.35238/sufefd.1068674.
ISNAD Zaki, Shrouk E. et al. “Phase Modulation of MoO2 -MoO3 Nanostructured Thin Films through W-Doping; Utilizing UV Photodetection and Gas Sensing Applications”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 48/1 (April 2022), 34-45. https://doi.org/10.35238/sufefd.1068674.
JAMA Zaki SE, Buyukharman M, Basyooni MA, Görmez AE, Sezgin A, Eker Y, Yılmaz M. Phase modulation of MoO2 -MoO3 nanostructured thin films through W-Doping; utilizing UV photodetection and gas sensing applications. sufefd. 2022;48:34–45.
MLA Zaki, Shrouk E. et al. “Phase Modulation of MoO2 -MoO3 Nanostructured Thin Films through W-Doping; Utilizing UV Photodetection and Gas Sensing Applications”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, vol. 48, no. 1, 2022, pp. 34-45, doi:10.35238/sufefd.1068674.
Vancouver Zaki SE, Buyukharman M, Basyooni MA, Görmez AE, Sezgin A, Eker Y, Yılmaz M. Phase modulation of MoO2 -MoO3 nanostructured thin films through W-Doping; utilizing UV photodetection and gas sensing applications. sufefd. 2022;48(1):34-45.

Journal Owner: On behalf of Selçuk University Faculty of Science, Rector Prof. Dr. Hüseyin YILMAZ
Selcuk University Journal of Science Faculty accepts articles in Turkish and English with original results in basic sciences and other applied sciences. The journal may also include compilations containing current innovations.

It was first published in 1981 as "S.Ü. Fen-Edebiyat Fakültesi Dergisi" and was published under this name until 1984 (Number 1-4).
In 1984, its name was changed to "S.Ü. Fen-Edeb. Fak. Fen Dergisi" and it was published under this name as of the 5th issue.
When the Faculty of Letters and Sciences was separated into the Faculty of Science and the Faculty of Letters with the decision of the Council of Ministers numbered 2008/4344 published in the Official Gazette dated 3 December 2008 and numbered 27073, it has been published as "Selcuk University Journal of Science Faculty" since 2009.
It has been scanned in DergiPark since 2016.

88x31.png

Selcuk University Journal of Science Faculty is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.