BibTex RIS Cite

Havacılıkta Kullanılan Bataryaların Tasarım Parametrelerine Göre Boyutlandırılması

Year 2017, Volume: 2 Issue: 1, 26 - 34, 01.03.2017

Abstract

Ulaşım araçlarının emisyonlarından dolayı çevre üzerindeki etkileri günümüzde çözüm üretimi açısından üzerinde odaklanılan konuların başında gelmektedir. Bu amaçla yenilikçi ve çevreye etkisi daha az olan ulaşım teknolojileri geliştirilmektedir. Havacılık alanında da uçaklarda tahrik sisteminde daha çok elektrik gücü kullanılanımı alternatifi olarak ortaya çıkmıştır. Elektrik enerjisinin özelliğinden dolayı, uçuş boyunca ihtiyaç olduğunda bulunabilmesi için üretiminin yanı sıra depolanması da gereklilik olarak görülmektedir. Elektrik enerjisinin uçaklarda depolanması için bataryalar diğer alternatifler arasından ön plana çıkmaktadır. Bu çalışmada uçaklarda kullanılan bataryanın tasarımı ve boyutlandırılmasına yönelik girdiler incelenerek tasarım formülleri geliştirilmiştir. Elde edilen formüller ile uçak tasarım aşamasında bataryanın ağırlığına yönelik kestirim ve kapasite iterasyonları yapılması mümkün olacaktır

References

  • Aizpuru, Iosu, Unai Iraola, Jose Mari Canales, and Ander Goikoetxea. 2016. “Comparative Study and Evaluation of Passive Balancing Against Single Switch Active Balancing Systems for Energy Storage Systems.” PCIM Europe, no. May: 10–12.
  • Andrea, Davide. 2010. Battery Management Systems for Large Lithium-Ion Battery Packs. Norwood: Artech House.
  • Avery, C. R., S. G. Burrow, and P. H. Mellor. 2007. “Electrical Generation and Distribution for the More Electric Aircraft.” Proceedings of the Universities Power Engineering Conference, 1007–12. doi:10.1109/UPEC.2007.4469088.
  • Baronti, F, and G Fantechi. 2013. “Design of the Battery Management System of LiFePO 4 Batteries for Electric off-Road Vehicles.” (ISIE), 2013 IEEE.
  • Baronti, Federico, Roberto Roncella, and Roberto Saletti. 2014. “Performance Comparison of Active Balancing Techniques for Lithium-Ion Batteries.” Journal of Power Sources 267. Elsevier B.V: 603–9. doi:10.1016/j.jpowsour.2014.05.007.
  • Borthomieu, Yannick. 2014. “Satellite Lithium-Ion Batteries.” In Lithium-Ion Batteries, 311–44. Elsevier. doi:10.1016/B978-0-444-59513- 3.00014-5.
  • Brussels. 2011. Flight Path 2050. Europe’s Vision for Aviation. European Union.
  • Chaturvedi, Nalin A., Reinhardt Klein, Jake Christensen, Jasim Ahmed, and Aleksandar Kojic. 2010. “Algorithms for Advanced Battery-Management Systems.” IEEE Control Systems Magazine 30 (3): 49–68. doi:10.1109/MCS.2010.936293.
  • Christen, Thomas, and Martin W. Carlen. 2000. “Theory of Ragone Plots.” Journal of Power Sources 91 (2): 210–16. doi:10.1016/S0378- 7753(00)00474-2.
  • Cuma, Mehmet Ugras, and Tahsin Koroglu. 2015. “A Comprehensive Review on Estimation Strategies Used in Hybrid and Battery Electric Vehicles.” Renewable and Sustainable Energy Reviews 42. Elsevier: 517–31. doi:10.1016/j.rser.2014.10.047.
  • Emadi, Ali, Mehrdad Ehsani, and John M Miller. 2004. Vehicular Electric Power Systems Land, Air, and Space Vehicles. Marcel Dekker.
  • “European Batteries Company Web Page.” 2016. http://www.europeanbatteries.com/upload/file s/EB_brochure_2011_EN.pdf.
  • Glaize, Christian, and Sylvie Geniès. 2013. “Definitions and Measuring Methods.” Lithium Batteries and Other Electrochemical Storage Systems, 21–87. doi:10.1002/9781118761120.ch2.
  • “Green Flight Challange Results.” 2011. http://cafe.foundation/v2/gfc_2011_results.ht ml.
  • Hamut, H. S., I. Dincer, and G. F. Naterer. 2014. “Experimental and Theoretical Efficiency Investigation of Hybrid Electric Vehicle Battery Thermal Management Systems.” Journal of Energy Resources Technology 136 (March): 11202. doi:10.1115/1.4026267.
  • Hauser, A., and R. Kuhn. 2015. “Cell Balancing, Battery State Estimation, and Safety Aspects of Battery Management Systems for Electric Vehicles.” In Advances in Battery Technologies for Electric Vehicles, 26262:283–326. Elsevier. doi:10.1016/B978- 1-78242-377-5.00012-1.
  • Howey, David A, and S M Alavi. 2015. “Rechargeable Battery Energy Storage System Design.” Handbook of Clean Energy Systems, Vol. 5. doi:10.1002/9781118991978.hces212.
  • IATA. 2013. “Technology Roadmap.”
  • Javani, N., I. Dincer, G.F. F. Naterer, and B.S. S. Yilbas. 2014. “Heat Transfer and Thermal Management with PCMs in a Li-Ion Battery Cell for Electric Vehicles.” International Journal of Heat and Mass Transfer 72 (May). Elsevier Ltd: 690–703. doi:10.1016/j.ijheatmasstransfer.2013.12.076.
  • Karden, Eckhard, Paul Shinn, Paul Bostock, James Cunningham, Evan Schoultz, and Daniel Kok. 2005. “Requirements for Future Automotive Batteries – a Snapshot.” Journal of Power Sources 144 (2): 505–12. doi:10.1016/j.jpowsour.2004.11.007.
  • Keyser, M, A Pesaran, S Oweis, G Chagnon, and C Ashtiani. 1999. “Thermal Evaluation and Performance of High-Power Lithium-Ion Cells.” In 16th Electric Vehicle Conference. Beijing, China.
  • Keyser, Matthew A., Ahmad Pesaran, Mark Mihalic, Ji-sang Yu, and Soo-ryung Kim. 2003. “Thermal Characterization of Advanced Lithium-Ion Polymer Cells.” In Third Advanced Automotive Battery Conference.
  • Kuhn, H., and A. Sizmann. 2012. “Fundamental Prerequisites for Electric Flying.” Deutscher Luft- Und Raumfahrt Kongress, DLRK, 1–8. doi:ID281440.
  • Lu, Languang, Xuebing Han, Jianqiu Li, Jianfeng Hua, and Minggao Ouyang. 2013. “A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles.” Journal of Power Sources 226. Elsevier B.V: 272–88. doi:10.1016/j.jpowsour.2012.10.060.
  • Luo, Xing, Jihong Wang, Mark Dooner, and Jonathan Clarke. 2015. “Overview of Current Development in Electrical Energy Storage Technologies and the Application Potential in Power System Operation.” Applied Energy 137 (January). Elsevier Ltd: 511–36. doi:10.1016/j.apenergy.2014.09.081.
  • Marsh, R.A Richard A., S Vukson, S Surampudi, B.V Ratnakumar, M.C Smart, M Manzo, and P.J Dalton. 2001. “Li Ion Batteries for Aerospace Applications.” Journal of Power Sources 97–98 (1–2): 25–27. doi:10.1016/S0378-7753(01)00584-5.
  • Marsh, Richard A. 1994. “Air Force Aviation Battery Programs.” In Proceedings of MILCOM ’94, 201. IEEE. doi:10.1109/MILCOM.1994.473946.
  • Meissner, Eberhard, and Gerolf Richter. 2003. “Battery Monitoring and Electrical Energy Management.” Journal of Power Sources 116 (1–2): 79–98. doi:10.1016/S0378- 7753(02)00713-9.
  • Misra, Ajay. 2012. “Technology Challenges for Electric Aircraft.” In EnergyTech 2012.
  • Naayagi, R. T. 2013. “A Review of More Electric Aircraft Technology.” In 2013 International Conference on Energy Efficient Technologies for Sustainability, 750–53. IEEE. doi:10.1109/ICEETS.2013.6533478.
  • National Transportation Safety Board. 2013. “Auxiliary Power Unit Battery Fire Japan Airlines Boeing 787-8.” Boston, MA.
  • Pals, Carolyn R., and John Newman. 1995. “Thermal Modeling of the Lithium/Polymer Battery I. Discharge Behavior of a Single Cell.” Journal of The Electrochemical Society 142 (10): 3282. doi:10.1149/1.2049975.
  • Pearson, W. 1998. “The More Electric/All Electric Aircraft - a Military Fast Jet Perspective.” IEE Colloquium on All Electric Aircraft, 5–5. doi:10.1049/ic:19980343.
  • Pesaran, Ahmad. 2001. “Battery Thermal Management in EVs and HEVs : Issues and Solutions.” In Advanced Automotive Battery Conference, 10. Las Vegas, Nevada.
  • Rahn. D., Christopher, and Chao-Yang Wang. 2013. Battery Systems Engineering. Wiley.
  • Ritchie, Andrew, and Wilmont Howard. 2006. “Recent Developments and Likely Advances in Lithium-Ion Batteries.” Journal of Power Sources 162 (2 SPEC. ISS.): 809–12. doi:10.1016/j.jpowsour.2005.07.014.
  • Shaw, J. C., S. D. A. Fletcher, P. J. Norman, and S. J. Galloway. 2012. “More Electric Power System Concepts for an Environmentally Responsible Aircraft (N+2).” Proceedings of the Universities Power Engineering Conference. doi:10.1109/UPEC.2012.6398668.
  • Unterrieder, C., C. Zhang, M. Lunglmayr, R. Priewasser, S. Marsili, and M. Huemer. 2015. “Battery State-of-Charge Estimation Using Approximate Least Squares.” Journal of Power Sources 278. Elsevier B.V: 274–86. doi:10.1016/j.jpowsour.2014.12.035.
  • Väyrynen, Antti, and Justin Salminen. 2012. “Lithium Ion Battery Production.” The Journal of Chemical Thermodynamics 46 (March): 80–85. doi:10.1016/j.jct.2011.09.005.
  • Vitols, Kristaps. 2015. “Efficiency of LiFePO4 Battery and Charger with Passive Balancing.” In 2015 IEEE 3rd Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), 1–4. IEEE. doi:10.1109/AIEEE.2015.7367295.
  • Wheeler, Pat, and Sergei Bozhko. 2014. “The More Electric Aircraft: Technology and Challenges.” IEEE Electrification Magazine 2 (4): 6–12. doi:10.1109/MELE.2014.2360720.
  • Williard, Nicholas, Wei He, Christopher Hendricks, and Michael Pecht. 2013. “Lessons Learned from the 787 Dreamliner Issue on Lithium- Ion Battery Reliability.” Energies 6 (9): 4682–95. doi:10.3390/en6094682.
  • Wu, Bin, Zhe Li, Jianbo Zhang, Jun Huang, Zhihua Nie, Ying Sun, Fuqiang An, and Ningning Wu. 2013. “Thermal Modelling of Large- Format Laminated Li-Ion Battery and Experimental Validation Using Embedded Thermocouples.” 2013 World Electric Vehicle Symposium and Exhibition (EVS27), no. 1: 1–9. doi:10.1109/EVS.2013.6914769.
  • Yildiz, Melih, Hikmet Karakoc, and Ibrahim Dincer. 2016. “Modeling and Validation of Temperature Changes in a Pouch Lithium-Ion Battery at Various Discharge Rates.” International Communications in Heat and Mass Transfer 75 (July): 311–14. doi:10.1016/j.icheatmasstransfer.2016.03.009
  • Zou, Yuan, Xiaosong Hu, Hongmin Ma, and Shengbo Eben Li. 2015. “Combined State of Charge and State of Health Estimation over Lithium-Ion Battery Cell Cycle Lifespan for Electric Vehicles.” Journal of Power Sources 273. Elsevier B.V: 793–803. doi:10.1016/j.jpowsour.2014.09.146.

SIZING OF BATTERIES USED IN AVIATION USING DESIGN PARAMETERS

Year 2017, Volume: 2 Issue: 1, 26 - 34, 01.03.2017

Abstract

The environmental impacts due to the emissions of transport vehicles are at the forefront of research issues today. For this purpose, innovative transportation technologies with less impact on the environment are being developed. In the field of aviation, the use of more electric power in the propulsion system has also emerged as an alternative. Due to the nature of electricity, it is necessary to store it as well as its production so that sufficient electric power would be available when needed during the flight. Batteries are among the alternatives for storing electricity in airplanes. In this study, input parameters were analyzed for designing and dimensioning the battery used in airplanes. The developed formulas will make it possible to estimate and iterate the weight and capacity of the battery that will be used in the aircraft

References

  • Aizpuru, Iosu, Unai Iraola, Jose Mari Canales, and Ander Goikoetxea. 2016. “Comparative Study and Evaluation of Passive Balancing Against Single Switch Active Balancing Systems for Energy Storage Systems.” PCIM Europe, no. May: 10–12.
  • Andrea, Davide. 2010. Battery Management Systems for Large Lithium-Ion Battery Packs. Norwood: Artech House.
  • Avery, C. R., S. G. Burrow, and P. H. Mellor. 2007. “Electrical Generation and Distribution for the More Electric Aircraft.” Proceedings of the Universities Power Engineering Conference, 1007–12. doi:10.1109/UPEC.2007.4469088.
  • Baronti, F, and G Fantechi. 2013. “Design of the Battery Management System of LiFePO 4 Batteries for Electric off-Road Vehicles.” (ISIE), 2013 IEEE.
  • Baronti, Federico, Roberto Roncella, and Roberto Saletti. 2014. “Performance Comparison of Active Balancing Techniques for Lithium-Ion Batteries.” Journal of Power Sources 267. Elsevier B.V: 603–9. doi:10.1016/j.jpowsour.2014.05.007.
  • Borthomieu, Yannick. 2014. “Satellite Lithium-Ion Batteries.” In Lithium-Ion Batteries, 311–44. Elsevier. doi:10.1016/B978-0-444-59513- 3.00014-5.
  • Brussels. 2011. Flight Path 2050. Europe’s Vision for Aviation. European Union.
  • Chaturvedi, Nalin A., Reinhardt Klein, Jake Christensen, Jasim Ahmed, and Aleksandar Kojic. 2010. “Algorithms for Advanced Battery-Management Systems.” IEEE Control Systems Magazine 30 (3): 49–68. doi:10.1109/MCS.2010.936293.
  • Christen, Thomas, and Martin W. Carlen. 2000. “Theory of Ragone Plots.” Journal of Power Sources 91 (2): 210–16. doi:10.1016/S0378- 7753(00)00474-2.
  • Cuma, Mehmet Ugras, and Tahsin Koroglu. 2015. “A Comprehensive Review on Estimation Strategies Used in Hybrid and Battery Electric Vehicles.” Renewable and Sustainable Energy Reviews 42. Elsevier: 517–31. doi:10.1016/j.rser.2014.10.047.
  • Emadi, Ali, Mehrdad Ehsani, and John M Miller. 2004. Vehicular Electric Power Systems Land, Air, and Space Vehicles. Marcel Dekker.
  • “European Batteries Company Web Page.” 2016. http://www.europeanbatteries.com/upload/file s/EB_brochure_2011_EN.pdf.
  • Glaize, Christian, and Sylvie Geniès. 2013. “Definitions and Measuring Methods.” Lithium Batteries and Other Electrochemical Storage Systems, 21–87. doi:10.1002/9781118761120.ch2.
  • “Green Flight Challange Results.” 2011. http://cafe.foundation/v2/gfc_2011_results.ht ml.
  • Hamut, H. S., I. Dincer, and G. F. Naterer. 2014. “Experimental and Theoretical Efficiency Investigation of Hybrid Electric Vehicle Battery Thermal Management Systems.” Journal of Energy Resources Technology 136 (March): 11202. doi:10.1115/1.4026267.
  • Hauser, A., and R. Kuhn. 2015. “Cell Balancing, Battery State Estimation, and Safety Aspects of Battery Management Systems for Electric Vehicles.” In Advances in Battery Technologies for Electric Vehicles, 26262:283–326. Elsevier. doi:10.1016/B978- 1-78242-377-5.00012-1.
  • Howey, David A, and S M Alavi. 2015. “Rechargeable Battery Energy Storage System Design.” Handbook of Clean Energy Systems, Vol. 5. doi:10.1002/9781118991978.hces212.
  • IATA. 2013. “Technology Roadmap.”
  • Javani, N., I. Dincer, G.F. F. Naterer, and B.S. S. Yilbas. 2014. “Heat Transfer and Thermal Management with PCMs in a Li-Ion Battery Cell for Electric Vehicles.” International Journal of Heat and Mass Transfer 72 (May). Elsevier Ltd: 690–703. doi:10.1016/j.ijheatmasstransfer.2013.12.076.
  • Karden, Eckhard, Paul Shinn, Paul Bostock, James Cunningham, Evan Schoultz, and Daniel Kok. 2005. “Requirements for Future Automotive Batteries – a Snapshot.” Journal of Power Sources 144 (2): 505–12. doi:10.1016/j.jpowsour.2004.11.007.
  • Keyser, M, A Pesaran, S Oweis, G Chagnon, and C Ashtiani. 1999. “Thermal Evaluation and Performance of High-Power Lithium-Ion Cells.” In 16th Electric Vehicle Conference. Beijing, China.
  • Keyser, Matthew A., Ahmad Pesaran, Mark Mihalic, Ji-sang Yu, and Soo-ryung Kim. 2003. “Thermal Characterization of Advanced Lithium-Ion Polymer Cells.” In Third Advanced Automotive Battery Conference.
  • Kuhn, H., and A. Sizmann. 2012. “Fundamental Prerequisites for Electric Flying.” Deutscher Luft- Und Raumfahrt Kongress, DLRK, 1–8. doi:ID281440.
  • Lu, Languang, Xuebing Han, Jianqiu Li, Jianfeng Hua, and Minggao Ouyang. 2013. “A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles.” Journal of Power Sources 226. Elsevier B.V: 272–88. doi:10.1016/j.jpowsour.2012.10.060.
  • Luo, Xing, Jihong Wang, Mark Dooner, and Jonathan Clarke. 2015. “Overview of Current Development in Electrical Energy Storage Technologies and the Application Potential in Power System Operation.” Applied Energy 137 (January). Elsevier Ltd: 511–36. doi:10.1016/j.apenergy.2014.09.081.
  • Marsh, R.A Richard A., S Vukson, S Surampudi, B.V Ratnakumar, M.C Smart, M Manzo, and P.J Dalton. 2001. “Li Ion Batteries for Aerospace Applications.” Journal of Power Sources 97–98 (1–2): 25–27. doi:10.1016/S0378-7753(01)00584-5.
  • Marsh, Richard A. 1994. “Air Force Aviation Battery Programs.” In Proceedings of MILCOM ’94, 201. IEEE. doi:10.1109/MILCOM.1994.473946.
  • Meissner, Eberhard, and Gerolf Richter. 2003. “Battery Monitoring and Electrical Energy Management.” Journal of Power Sources 116 (1–2): 79–98. doi:10.1016/S0378- 7753(02)00713-9.
  • Misra, Ajay. 2012. “Technology Challenges for Electric Aircraft.” In EnergyTech 2012.
  • Naayagi, R. T. 2013. “A Review of More Electric Aircraft Technology.” In 2013 International Conference on Energy Efficient Technologies for Sustainability, 750–53. IEEE. doi:10.1109/ICEETS.2013.6533478.
  • National Transportation Safety Board. 2013. “Auxiliary Power Unit Battery Fire Japan Airlines Boeing 787-8.” Boston, MA.
  • Pals, Carolyn R., and John Newman. 1995. “Thermal Modeling of the Lithium/Polymer Battery I. Discharge Behavior of a Single Cell.” Journal of The Electrochemical Society 142 (10): 3282. doi:10.1149/1.2049975.
  • Pearson, W. 1998. “The More Electric/All Electric Aircraft - a Military Fast Jet Perspective.” IEE Colloquium on All Electric Aircraft, 5–5. doi:10.1049/ic:19980343.
  • Pesaran, Ahmad. 2001. “Battery Thermal Management in EVs and HEVs : Issues and Solutions.” In Advanced Automotive Battery Conference, 10. Las Vegas, Nevada.
  • Rahn. D., Christopher, and Chao-Yang Wang. 2013. Battery Systems Engineering. Wiley.
  • Ritchie, Andrew, and Wilmont Howard. 2006. “Recent Developments and Likely Advances in Lithium-Ion Batteries.” Journal of Power Sources 162 (2 SPEC. ISS.): 809–12. doi:10.1016/j.jpowsour.2005.07.014.
  • Shaw, J. C., S. D. A. Fletcher, P. J. Norman, and S. J. Galloway. 2012. “More Electric Power System Concepts for an Environmentally Responsible Aircraft (N+2).” Proceedings of the Universities Power Engineering Conference. doi:10.1109/UPEC.2012.6398668.
  • Unterrieder, C., C. Zhang, M. Lunglmayr, R. Priewasser, S. Marsili, and M. Huemer. 2015. “Battery State-of-Charge Estimation Using Approximate Least Squares.” Journal of Power Sources 278. Elsevier B.V: 274–86. doi:10.1016/j.jpowsour.2014.12.035.
  • Väyrynen, Antti, and Justin Salminen. 2012. “Lithium Ion Battery Production.” The Journal of Chemical Thermodynamics 46 (March): 80–85. doi:10.1016/j.jct.2011.09.005.
  • Vitols, Kristaps. 2015. “Efficiency of LiFePO4 Battery and Charger with Passive Balancing.” In 2015 IEEE 3rd Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), 1–4. IEEE. doi:10.1109/AIEEE.2015.7367295.
  • Wheeler, Pat, and Sergei Bozhko. 2014. “The More Electric Aircraft: Technology and Challenges.” IEEE Electrification Magazine 2 (4): 6–12. doi:10.1109/MELE.2014.2360720.
  • Williard, Nicholas, Wei He, Christopher Hendricks, and Michael Pecht. 2013. “Lessons Learned from the 787 Dreamliner Issue on Lithium- Ion Battery Reliability.” Energies 6 (9): 4682–95. doi:10.3390/en6094682.
  • Wu, Bin, Zhe Li, Jianbo Zhang, Jun Huang, Zhihua Nie, Ying Sun, Fuqiang An, and Ningning Wu. 2013. “Thermal Modelling of Large- Format Laminated Li-Ion Battery and Experimental Validation Using Embedded Thermocouples.” 2013 World Electric Vehicle Symposium and Exhibition (EVS27), no. 1: 1–9. doi:10.1109/EVS.2013.6914769.
  • Yildiz, Melih, Hikmet Karakoc, and Ibrahim Dincer. 2016. “Modeling and Validation of Temperature Changes in a Pouch Lithium-Ion Battery at Various Discharge Rates.” International Communications in Heat and Mass Transfer 75 (July): 311–14. doi:10.1016/j.icheatmasstransfer.2016.03.009
  • Zou, Yuan, Xiaosong Hu, Hongmin Ma, and Shengbo Eben Li. 2015. “Combined State of Charge and State of Health Estimation over Lithium-Ion Battery Cell Cycle Lifespan for Electric Vehicles.” Journal of Power Sources 273. Elsevier B.V: 793–803. doi:10.1016/j.jpowsour.2014.09.146.
There are 45 citations in total.

Details

Other ID JA68NT64ND
Journal Section Research Article
Authors

Melih Yıldız

T. Hikmet Karakoç

Publication Date March 1, 2017
Published in Issue Year 2017 Volume: 2 Issue: 1

Cite

APA Yıldız, M., & Karakoç, T. H. (2017). Havacılıkta Kullanılan Bataryaların Tasarım Parametrelerine Göre Boyutlandırılması. Sürdürülebilir Havacılık Araştırmaları Dergisi, 2(1), 26-34.
AMA Yıldız M, Karakoç TH. Havacılıkta Kullanılan Bataryaların Tasarım Parametrelerine Göre Boyutlandırılması. SÜHAD. March 2017;2(1):26-34.
Chicago Yıldız, Melih, and T. Hikmet Karakoç. “Havacılıkta Kullanılan Bataryaların Tasarım Parametrelerine Göre Boyutlandırılması”. Sürdürülebilir Havacılık Araştırmaları Dergisi 2, no. 1 (March 2017): 26-34.
EndNote Yıldız M, Karakoç TH (March 1, 2017) Havacılıkta Kullanılan Bataryaların Tasarım Parametrelerine Göre Boyutlandırılması. Sürdürülebilir Havacılık Araştırmaları Dergisi 2 1 26–34.
IEEE M. Yıldız and T. H. Karakoç, “Havacılıkta Kullanılan Bataryaların Tasarım Parametrelerine Göre Boyutlandırılması”, SÜHAD, vol. 2, no. 1, pp. 26–34, 2017.
ISNAD Yıldız, Melih - Karakoç, T. Hikmet. “Havacılıkta Kullanılan Bataryaların Tasarım Parametrelerine Göre Boyutlandırılması”. Sürdürülebilir Havacılık Araştırmaları Dergisi 2/1 (March 2017), 26-34.
JAMA Yıldız M, Karakoç TH. Havacılıkta Kullanılan Bataryaların Tasarım Parametrelerine Göre Boyutlandırılması. SÜHAD. 2017;2:26–34.
MLA Yıldız, Melih and T. Hikmet Karakoç. “Havacılıkta Kullanılan Bataryaların Tasarım Parametrelerine Göre Boyutlandırılması”. Sürdürülebilir Havacılık Araştırmaları Dergisi, vol. 2, no. 1, 2017, pp. 26-34.
Vancouver Yıldız M, Karakoç TH. Havacılıkta Kullanılan Bataryaların Tasarım Parametrelerine Göre Boyutlandırılması. SÜHAD. 2017;2(1):26-34.