Research Article
BibTex RIS Cite

A MONOGENIC LOCAL GABOR BINARY PATTERN FOR FACIAL EXPRESSION RECOGNITION

Year 2017, Volume: 5 Issue: 4, 414 - 422, 01.12.2017
https://doi.org/10.15317/Scitech.2017.101

Abstract

The paper implements a monogenic-Local Binary Pattern (mono-LBP) algorithm on Local Gabor Pattern (LGP). The proposed approach initially features from the samples using LGP at different scales and orientation. The extracted LGP features are further enhanced by decomposing it into three monogenic LBP channels before being recombined to generate the final feature vector. Different Normalization schemes are applied to the final feature vector. Two best performing normalization algorithms with mono-LBP are fused at score level to obtain an improved performance using K-Nearest Neighbor classifier with L1-norm as a distance metrics. Moreover, performance comparison is done with other variants of LGP algorithm and also the effects of various normalization techniques are investigated. Experimental results from JAFFE and TFEID facial expression databases show that the new technique has improved performance compared to its counterparts.

References

  • Ahonen T., Hadid A., Pietikainen M., 2006, “Face Description with Local Binary Patterns: Application to Face Recognition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28(12), pp. 2037-2041.
  • Chao, W. L., Ding, J. J., Liu, J. Z., 2015, “Facial Expression Recognition based on Improved Local Binary Pattern and Class-regularized Locality Preserving Projection”, Signal Processing, Vol. 117, pp. 1-10.
  • Chen, L. F., Yen, Y. S., 2007, “Taiwanese Facial Expression Image Database”, Brain Mapping Laboratory, Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.
  • Cootes, T. F., Taylor, C. J., Cooper, D. H., Graham, J., 1995, “Active Shape Models, Their Training and Application,” Computer Vision and Image Understanding, Vol. 61(1), pp. 38-59.
  • Doughman, J., 2001, “High Confidence Recognition of Persons by Iris Patterns”, IEEE International Carnahan Conference on Security Technology, London, England, pp. 254-263, 16-19 October 2001.
  • Eleyan, A., Demirel, H., Özkaramanli, H., 2008, “Complex Wavelet Transform-Based Face Recognition”, EURASIP Journal on Advances in Signal Processing, Vol. 2008, pp. 1-13.
  • Liu, C., Wechsler, H., 2003, “Independent Component Analysis of Gabor Features for Face Recognition”, IEEE Transactions on Neural Networks, Vol. 14(4), pp. 919-928.
  • Lyons, M., Akamatsu, S., Kamachi, M. and Gyoba, J., 1998, “Coding Facial Expressions with Gabor Wavelets”, 3rd IEEE International Conference on Automatic Face and Gesture Recognition (AFGR), Nara, Japan, pp. 200-205, 14-16 April 1998.
  • Nandakumar, K., Jain, A., Ross, A., 2005, “Score Normalization in Multimodal Biometric Systems”, The Journal of Pattern Recognition Society, Elservier, Vol. 38, pp. 2270-2285.
  • Ojala, T., Pietikainen, M., Maenpaa, T., 2010, “Multi-resolution Gray Scale and Rotation Invariant Texture Analysis with Local Binary Patterns”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24(7), pp. 971-987.
  • Ribaric S., Fratric I., 2006, “Experimental Evaluation of Matching-Score Normalization Techniques on Different Multimodal Biometric Systems”, IEEE Mediterranean Electrotechnical Conference, MELECON, Malaga, Spain, pp. 498-501, 16-19 May 2006.
  • Sigdel, M., Dinc, S., Sigdel, M. S., Pusey, M. L., Aygun, R. S., 2014, “Evaluation of Normalization and PCA on the Performance of Classifiers for Protein Crystallization Images” IEEE Conference on SOUTHEASTCON, Lexington, KY, USA, pp. 1-6, 13-16 March 2014.
  • Tran C. K., Lee T. F., Chang L., Chao P. J., 2014, “Face Description with Local Binary Patterns and Local Ternary Patterns: Improving Face Recognition Performance Using Similarity Feature-Based Selection and Classification Algorithm”, International Symposium on Computer, Consumer and Control, Taichung, Taiwan, pp. 520-524. 10-12 June 2014.
  • Yanxia, J. Bo, R., 2010, “Face Recognition using Local Gabor Phase Characteristics”, IEEE International Conference on Intelligence and Software Engineering, Wuhan, China, pp. 1-4, 10-12 December 2010.
  • Zhang, B., Shan, S., Chen, X., Gao, W., 2007, “Histogram of Gabor Phase Patterns (HGPP): A Novel Object Representation Approach for Face Recognition”, IEEE Transaction on Image Processing, Vol. 16(1), pp. 57–68.
  • Zhang L., Zhang L., Guo Z., Zhang D., 2010, “Monogenic-LBP: A New Approach for Rotation Invariant Texture Classification”, 17th IEEE International Conference on Image Processing (ICIP), Hong Kong, China, pp. 2677 – 2680, 26-29 September 2010.

Yüz İfade Tanınması İçin Bir Monojenik Yerel Gabor İkili Desen

Year 2017, Volume: 5 Issue: 4, 414 - 422, 01.12.2017
https://doi.org/10.15317/Scitech.2017.101

Abstract

Bu makale, yerel Gabor Desen (LGP) üzerinde monojenik-Yerel İkili Desen (mono-LBP) algoritmasını uygular. Önerilen algoritma Gabor çekirdeğinin farklı ölçeklerinde ve farklı normalizasyon şemaları ile uygulanır. Mono-LBP ile en iyi performans gösteren normalleştirme algoritmalarından elde edilen sonuçlar, geliştirilmiş bir performans elde etmek için skor düzeyinde birleştirilmiştir. Üstelik, performans karşılaştırması diğer LGP algoritmasının türevleri ile yapılmıştır ve ayrıca çeşitli normalleştirme tekniklerinin etkileri araştırılmaktadır. JAFFE yüz ifadesi veritabanında yapılan deneysel sonuçlarine göre, önerilen yaklaşım bir sınıflandırıcı olarak mesafe metrikini kullanarak mevcut algoritmalara kıyasla en iyi ortalama performansa sahip olduğunu göstermektedir.

References

  • Ahonen T., Hadid A., Pietikainen M., 2006, “Face Description with Local Binary Patterns: Application to Face Recognition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28(12), pp. 2037-2041.
  • Chao, W. L., Ding, J. J., Liu, J. Z., 2015, “Facial Expression Recognition based on Improved Local Binary Pattern and Class-regularized Locality Preserving Projection”, Signal Processing, Vol. 117, pp. 1-10.
  • Chen, L. F., Yen, Y. S., 2007, “Taiwanese Facial Expression Image Database”, Brain Mapping Laboratory, Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.
  • Cootes, T. F., Taylor, C. J., Cooper, D. H., Graham, J., 1995, “Active Shape Models, Their Training and Application,” Computer Vision and Image Understanding, Vol. 61(1), pp. 38-59.
  • Doughman, J., 2001, “High Confidence Recognition of Persons by Iris Patterns”, IEEE International Carnahan Conference on Security Technology, London, England, pp. 254-263, 16-19 October 2001.
  • Eleyan, A., Demirel, H., Özkaramanli, H., 2008, “Complex Wavelet Transform-Based Face Recognition”, EURASIP Journal on Advances in Signal Processing, Vol. 2008, pp. 1-13.
  • Liu, C., Wechsler, H., 2003, “Independent Component Analysis of Gabor Features for Face Recognition”, IEEE Transactions on Neural Networks, Vol. 14(4), pp. 919-928.
  • Lyons, M., Akamatsu, S., Kamachi, M. and Gyoba, J., 1998, “Coding Facial Expressions with Gabor Wavelets”, 3rd IEEE International Conference on Automatic Face and Gesture Recognition (AFGR), Nara, Japan, pp. 200-205, 14-16 April 1998.
  • Nandakumar, K., Jain, A., Ross, A., 2005, “Score Normalization in Multimodal Biometric Systems”, The Journal of Pattern Recognition Society, Elservier, Vol. 38, pp. 2270-2285.
  • Ojala, T., Pietikainen, M., Maenpaa, T., 2010, “Multi-resolution Gray Scale and Rotation Invariant Texture Analysis with Local Binary Patterns”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24(7), pp. 971-987.
  • Ribaric S., Fratric I., 2006, “Experimental Evaluation of Matching-Score Normalization Techniques on Different Multimodal Biometric Systems”, IEEE Mediterranean Electrotechnical Conference, MELECON, Malaga, Spain, pp. 498-501, 16-19 May 2006.
  • Sigdel, M., Dinc, S., Sigdel, M. S., Pusey, M. L., Aygun, R. S., 2014, “Evaluation of Normalization and PCA on the Performance of Classifiers for Protein Crystallization Images” IEEE Conference on SOUTHEASTCON, Lexington, KY, USA, pp. 1-6, 13-16 March 2014.
  • Tran C. K., Lee T. F., Chang L., Chao P. J., 2014, “Face Description with Local Binary Patterns and Local Ternary Patterns: Improving Face Recognition Performance Using Similarity Feature-Based Selection and Classification Algorithm”, International Symposium on Computer, Consumer and Control, Taichung, Taiwan, pp. 520-524. 10-12 June 2014.
  • Yanxia, J. Bo, R., 2010, “Face Recognition using Local Gabor Phase Characteristics”, IEEE International Conference on Intelligence and Software Engineering, Wuhan, China, pp. 1-4, 10-12 December 2010.
  • Zhang, B., Shan, S., Chen, X., Gao, W., 2007, “Histogram of Gabor Phase Patterns (HGPP): A Novel Object Representation Approach for Face Recognition”, IEEE Transaction on Image Processing, Vol. 16(1), pp. 57–68.
  • Zhang L., Zhang L., Guo Z., Zhang D., 2010, “Monogenic-LBP: A New Approach for Rotation Invariant Texture Classification”, 17th IEEE International Conference on Image Processing (ICIP), Hong Kong, China, pp. 2677 – 2680, 26-29 September 2010.
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Alaa Eleyan

Abubakar M. Ashır This is me

Publication Date December 1, 2017
Published in Issue Year 2017 Volume: 5 Issue: 4

Cite

APA Eleyan, A., & Ashır, A. M. (2017). A MONOGENIC LOCAL GABOR BINARY PATTERN FOR FACIAL EXPRESSION RECOGNITION. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 5(4), 414-422. https://doi.org/10.15317/Scitech.2017.101
AMA Eleyan A, Ashır AM. A MONOGENIC LOCAL GABOR BINARY PATTERN FOR FACIAL EXPRESSION RECOGNITION. sujest. December 2017;5(4):414-422. doi:10.15317/Scitech.2017.101
Chicago Eleyan, Alaa, and Abubakar M. Ashır. “A MONOGENIC LOCAL GABOR BINARY PATTERN FOR FACIAL EXPRESSION RECOGNITION”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 5, no. 4 (December 2017): 414-22. https://doi.org/10.15317/Scitech.2017.101.
EndNote Eleyan A, Ashır AM (December 1, 2017) A MONOGENIC LOCAL GABOR BINARY PATTERN FOR FACIAL EXPRESSION RECOGNITION. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 5 4 414–422.
IEEE A. Eleyan and A. M. Ashır, “A MONOGENIC LOCAL GABOR BINARY PATTERN FOR FACIAL EXPRESSION RECOGNITION”, sujest, vol. 5, no. 4, pp. 414–422, 2017, doi: 10.15317/Scitech.2017.101.
ISNAD Eleyan, Alaa - Ashır, Abubakar M. “A MONOGENIC LOCAL GABOR BINARY PATTERN FOR FACIAL EXPRESSION RECOGNITION”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 5/4 (December 2017), 414-422. https://doi.org/10.15317/Scitech.2017.101.
JAMA Eleyan A, Ashır AM. A MONOGENIC LOCAL GABOR BINARY PATTERN FOR FACIAL EXPRESSION RECOGNITION. sujest. 2017;5:414–422.
MLA Eleyan, Alaa and Abubakar M. Ashır. “A MONOGENIC LOCAL GABOR BINARY PATTERN FOR FACIAL EXPRESSION RECOGNITION”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, vol. 5, no. 4, 2017, pp. 414-22, doi:10.15317/Scitech.2017.101.
Vancouver Eleyan A, Ashır AM. A MONOGENIC LOCAL GABOR BINARY PATTERN FOR FACIAL EXPRESSION RECOGNITION. sujest. 2017;5(4):414-22.

MAKALELERINIZI 

http://sujest.selcuk.edu.tr

uzerinden gonderiniz