Research Article
BibTex RIS Cite

Uluslararası fındık ticaretinin gelişimi ve ihracat etkisinin belirleyicileri

Year 2022, Volume: 28 Issue: 1, 55 - 65, 31.07.2022
https://doi.org/10.24181/tarekoder.1049847

Abstract

Amaç: Başta Türkiye olmak üzere fındık ticareti yapan ülkelerin, ihracat performansının belirleyicilerinin tespit edilmesi amaçlanmıştır.
Tasarım/Metodoloji /Yaklaşım: Bu çalışmada, uluslararası fındık ticareti dinamiklerinin 1990-2018 yılları arasındaki evrimi öncelikle karmaşık ağ analizi ile incelenmektedir. Daha sonra aynı dönem için panel veri analizi kullanılarak uluslararası fındık ticaretinin belirlenmesi analiz edilmiştir. Ağ yaklaşımı ile karmaşık sistem özellikleri ortaya çıkarıldıktan sonra, bir panel veri analizinde bağımlı değişken olarak ağ analizinden elde edilen bulgular olan ihracat etkisinin yüksek dereceli bir göstergesi (odak merkeziliği) kullanılmıştır.
Bulgular: Panel yaklaşımında, uluslararası pazardaki ilk beş ülkenin (Türkiye, İtalya, Gürcistan, Şili ve Azerbaycan) odak merkezilikleri ile 1996-2018 dönemi için hasat edilen alan arasındaki uzun vadeli ilişkiyi inceledik. Bu kapsamda; karmaşık ağ yaklaşımı, Türkiye'nin her zaman uluslararası fındık ticaret ağının lideri olduğunu ve ayrıca İtalya, Gürcistan, Şili ve Azerbaycan'ın yükselişte olduğunu göstermiştir. Panel eşbütünleşme sonuçları, hasat edilen alanın, İtalya dışındaki fındık üreticisi ülkelerin (Türkiye, Azerbaycan, Gürcistan ve Şili) odak merkeziklikleri üzerinde olumlu bir etkisi olduğunu ortaya koymuştur. Bu etki en yüksek Azerbaycan'dadır ve Azerbaycan'ı Gürcistan ve Şili izlemektedir. Hasat edilen alan, Türkiye'de odak merkeziliği üzerinde en düşük etkiye sahiptir.
Özgünlük/Değer: İki farklı yöntem kullanılarak elde edilen bulgularla fındık ihracatında, fındık ekili alanının önemini ortaya koyması açısından çalışma literatüre önemli bir katkı sağlamaktadır.

References

  • Acaravci, A, Bozkurt C. and Erdogan S. 2015. ‘Democracy-economic growth nexus in MENA countries’, Journal of Business and Economics Studies, 3(4), 119–129.
  • Akal, M. 2009. ‘Estimation of hazelnut export of Turkey and forecast accuracies’, ZKÜ Sosyal Bilimler Dergisi, 5(10):77–96.
  • An, N., Turp, M.T. and Turke, M. 2020. ‘Mid-Term impact of climate change on hazelnut yield’, Agriculture, 10(159), 1–20.
  • Bayramoglu, Z.O., Ozer O., Gundogmus, E. and Tatlidil, F.F. 2010. ‘The Impact of Changes in Turkey’s Hazelnut Policy on World Markets’, African Journal of Agricultural Research 5(1):7–15.
  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. and Hwang, D. U. 2006. ‘Complex networks: structure and dynamics’, Physics Reports, 424, 175-308.
  • Borgatti, S.P. and Everett, M.G. 2000. ‘Models of Core/Periphery Structures. Social Networks, 21(4), 375–395. https://doi.org/10.1016/S0378-8733(99)00019-2
  • Bozoglu, M. 2005. ‘The Situation of the Hazelnut Sector in Turkey’, Acta Horticulturae 686:641–48.
  • Bozoglu, M., Baser U., Kilic Topuz, B. and Eroglu, N. E. 2019. ‘An Overview of Hazelnut Markets and Policy in Turkey’, Kahramanmaras Sutcu Imam Universitesi Tarim ve Doga Dergisi 22(5):733–43.
  • Candemir, M., Mumin O., Gunes M. and Deliktas E. 2011. ‘Technical efficiency and total factor productivity growth in the hazelnut agricultural sales cooperatives unions in Turkey. Mathematical and Computational Applications, 16(1):66–76.
  • Caporali, F., Mancinelli, R. and Campiglia, E. 2003. ‘Indicators of cropping system diversity in organic and conventional farms in central Italy’, International Journal of Agricultural Sustainability, 1:1, 67-72, DOI: 10.3763/ijas.2003.0107
  • Clauset, A. 2011. ‘Power-law distributions. Inference, models and simulation for complex systems lectures.
  • Csermely, P., London, A., Wu, L.-Y. and Uzzi, B. 2013. ‘Structure and dynamics of core/periphery networks’, Journal of Complex Networks, 1(2), 93–123. https://doi.org/10.1093/comnet/cnt016
  • Colak, C., Selman, T. and Uzun, Y. 2014. ‘Determinants of Sectoral Import in Manufacturing Industry: A Panel Data Analysis’, Ege Academic Review, 14(2), 271-281.
  • Dogru, M., Howarth, C.R, Akay, G, Keskinler, B. and Malik, A., A. 2002. ‘Gasification of hazelnut shells in a downdraft gasifier’, Energy 27:415–27.
  • Eberhardt, M. and Bond, S. 2009. ‘Cross-section dependence in nonstationary panel models: a novel estimator’, MPRA, Paper No. 17692.
  • Fagiolo, G., Squartini, T. and Garlaschelli, D. 2013. ‘Null models of economic networks: The case of the world trade web’, Journal of Economic Interaction and Coordination (Vol. 8) https://doi.org/10.1007/s11403-012-0104-7
  • Franchi, M. and Boubaker, k. 2014. ‘Valorization of Hazelnut Biomass Framework in Turkey: Support and Model Guidelines from the Italian Experience in the Field of Renewable Energy’, International Journal of Sustainable Energy and Environmental Research, 3(3), pp. 130-144.
  • Fuge, M., Tee, K., Agogino, A. and Maton, N. 2014. ‘Analysis of collaborative design networks: A case study of openideo’, Journal of Computing and Information Science in Engineering, 14(2).
  • Gonenc, S., Tanrivermis, H. and Bulbul, M. 2006. ‘Economic assessment of hazelnut production and the importance of supply management approaches in Turkey’, Journal of Agriculture and Rural Development in the Tropics and Subtropics, 107(1):19–32.
  • INC, (2020. ‘Nuts and Dried Fruits Statistical Yearbook 2019 / 2020’, Accessed on September 20, 2020.
  • Kayalak, S. and Özcelik, A. 2012. ‘Hazelnut policies in Turkey and in the world’, The Turkish Journal of Agricultural Economics, 18(2):43–53.
  • Kleinberg, J., M. 1999. ‘Authoritative sources in a hyperlinked environment’, Journal of the ACM, 46(5), 604–632. https://doi.org/10.1145/324133.324140
  • Marongiu, S. 2005. ‘An econometric analysis to evaluate hazelnut price formation on the international hazelnut market’, New Medit N. 4/2005, pp.14-20. Newman, M.E.J. 2010. ‘Networks: An introduction’, Oxford University Press. ISBN 978-0-19-920665-0
  • OECD (2009. ‘Applications of complexity science for public policy- new tools for finding unanticipated consequences and unrealized opportunities’, https://www.oecd.org/science/publicationsdocuments/reports/24/ Accessed on June 07, 2020.
  • Pan, C., Chang, T. and Wolde-Rufael, Y. 2015. ‘Military spending and economic growth in the middle east countries: bootstrap panel causality test’, Defence and Peace Economics, 26 (24), 443-456.
  • Pesaran, M. H. 2004. ‘General diagnostic tests for cross section dependence in panels’, CWPE, 0435.
  • Pesaran, M. H. 2007. ‘A simple panel unit root test in the presence of cross-section dependence’, Journal of Applied Econometrics, 22(2), 265–312. https://doi.org/10.1002/jae.951
  • Pesaran, M. H. and Yamagata T. 2008. ‘Testing slope homogeneity in large panels’, Journal of Econometrics, 142(1), 50-93.
  • R igraph manual pages. https://igraph.org/r/doc/fit_power_law.html Accessed on June 10, 2020.
  • Republic of Turkey Ministry of Customs and Trade, (2019. ‘Directorate general of cooperatives directorate general of cooperatives’, Hazelnut Report. http://koop.gtb.gov.tr/data/5ad06bb9ddee7dd8b423eb23/2017%20F%C4%B1nd%C4%B1k%20Raporu.pdf Reichardt, J. 2009. ‘Introduction to complex networks’, Springer-Verlag, Berlin Heidelberg.
  • Ruzzenenti, F., Garlaschelli, D. and Basosi, R. 2010. ‘Complex networks and symmetry II: Reciprocity and evolution of world trade’, Symmetry, 2(3), 1710–1744. https://doi.org/10.3390/sym2031710
  • Sisman, M.Y. 2020. ‘Market imperfections and competition: An empirical analysis on the Turkish hazelnut markets’, Turkey’s Economic, Fiscal and Social Problems (March).
  • Tanrivermis, H. 2008. ‘Comparative economic assessment of conventional and organic hazelnut farming in Turkey:
  • Results of questionnaires from three years’, Biological Agriculture and Horticulture 26(3):235–67. Westerlund, J. 2008. ‘Panel cointegration tests of the fisher effect’, Journal of Applied Econometrics, 23(2), 193-233.
  • Yavuz, F., Avni, B. R., Peker, K. and Atsan, T. 2005. ‘Econometric Modeling of Turkey’s Hazelnut Sector : Implications on Recent Policies’, Turk J Agric For 29:1–7.
  • Yerdelen Tatoglu, F. 2013. ‘İleri panel veri analizi stata uygulamali’, 2nd ed. Beta, İstanbul.

The evolution of international hazelnut trade and determinants of export impact

Year 2022, Volume: 28 Issue: 1, 55 - 65, 31.07.2022
https://doi.org/10.24181/tarekoder.1049847

Abstract

Purpose: It is aimed to examine the determinants of export impact of countries which trade hazelnuts, especially Turkey.
Design/Methodology/Approach: In this study, the evolution of the dynamics of international hazelnut trade is examined from 1990 to 2018 via complex network analysis. Then, we analyzed the determinants of international hazelnut trade by using panel data analysis for the same period. After revealing complex system features with network approach, a high-degree indicator of export impact (hub centrality), which is the findings obtained from network analysis, has been used as the dependent variable in panel data analysis.
Findings: In the panel approach, we examined the long-run relationship between hub centralities of the top five countries (Turkey, Italy, Georgia, Chile, and Azerbaijan) and area harvested for the period 1996-2018. Within this scope; the complex network approach showed that Turkey is always the leader of the international hazelnut trade network while Italy, Georgia, Chile, and Azerbaijan are the countries on the rise. Panel cointegration results revealed that the area harvested has a positive impact on hub centralities of hazelnut producer countries (Turkey, Azerbaijan, Georgia, and Chile), except Italy. This impact is the highest in Azerbaijan, and Georgia and Chile follow this country. Area harvested has the lowest impact on hub centrality of Turkey.
Originality/Value: The study makes an important contribution to the literature in terms of revealing the importance of hazelnut area harvested in hazelnut export with the findings obtained by using two different methods.

References

  • Acaravci, A, Bozkurt C. and Erdogan S. 2015. ‘Democracy-economic growth nexus in MENA countries’, Journal of Business and Economics Studies, 3(4), 119–129.
  • Akal, M. 2009. ‘Estimation of hazelnut export of Turkey and forecast accuracies’, ZKÜ Sosyal Bilimler Dergisi, 5(10):77–96.
  • An, N., Turp, M.T. and Turke, M. 2020. ‘Mid-Term impact of climate change on hazelnut yield’, Agriculture, 10(159), 1–20.
  • Bayramoglu, Z.O., Ozer O., Gundogmus, E. and Tatlidil, F.F. 2010. ‘The Impact of Changes in Turkey’s Hazelnut Policy on World Markets’, African Journal of Agricultural Research 5(1):7–15.
  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. and Hwang, D. U. 2006. ‘Complex networks: structure and dynamics’, Physics Reports, 424, 175-308.
  • Borgatti, S.P. and Everett, M.G. 2000. ‘Models of Core/Periphery Structures. Social Networks, 21(4), 375–395. https://doi.org/10.1016/S0378-8733(99)00019-2
  • Bozoglu, M. 2005. ‘The Situation of the Hazelnut Sector in Turkey’, Acta Horticulturae 686:641–48.
  • Bozoglu, M., Baser U., Kilic Topuz, B. and Eroglu, N. E. 2019. ‘An Overview of Hazelnut Markets and Policy in Turkey’, Kahramanmaras Sutcu Imam Universitesi Tarim ve Doga Dergisi 22(5):733–43.
  • Candemir, M., Mumin O., Gunes M. and Deliktas E. 2011. ‘Technical efficiency and total factor productivity growth in the hazelnut agricultural sales cooperatives unions in Turkey. Mathematical and Computational Applications, 16(1):66–76.
  • Caporali, F., Mancinelli, R. and Campiglia, E. 2003. ‘Indicators of cropping system diversity in organic and conventional farms in central Italy’, International Journal of Agricultural Sustainability, 1:1, 67-72, DOI: 10.3763/ijas.2003.0107
  • Clauset, A. 2011. ‘Power-law distributions. Inference, models and simulation for complex systems lectures.
  • Csermely, P., London, A., Wu, L.-Y. and Uzzi, B. 2013. ‘Structure and dynamics of core/periphery networks’, Journal of Complex Networks, 1(2), 93–123. https://doi.org/10.1093/comnet/cnt016
  • Colak, C., Selman, T. and Uzun, Y. 2014. ‘Determinants of Sectoral Import in Manufacturing Industry: A Panel Data Analysis’, Ege Academic Review, 14(2), 271-281.
  • Dogru, M., Howarth, C.R, Akay, G, Keskinler, B. and Malik, A., A. 2002. ‘Gasification of hazelnut shells in a downdraft gasifier’, Energy 27:415–27.
  • Eberhardt, M. and Bond, S. 2009. ‘Cross-section dependence in nonstationary panel models: a novel estimator’, MPRA, Paper No. 17692.
  • Fagiolo, G., Squartini, T. and Garlaschelli, D. 2013. ‘Null models of economic networks: The case of the world trade web’, Journal of Economic Interaction and Coordination (Vol. 8) https://doi.org/10.1007/s11403-012-0104-7
  • Franchi, M. and Boubaker, k. 2014. ‘Valorization of Hazelnut Biomass Framework in Turkey: Support and Model Guidelines from the Italian Experience in the Field of Renewable Energy’, International Journal of Sustainable Energy and Environmental Research, 3(3), pp. 130-144.
  • Fuge, M., Tee, K., Agogino, A. and Maton, N. 2014. ‘Analysis of collaborative design networks: A case study of openideo’, Journal of Computing and Information Science in Engineering, 14(2).
  • Gonenc, S., Tanrivermis, H. and Bulbul, M. 2006. ‘Economic assessment of hazelnut production and the importance of supply management approaches in Turkey’, Journal of Agriculture and Rural Development in the Tropics and Subtropics, 107(1):19–32.
  • INC, (2020. ‘Nuts and Dried Fruits Statistical Yearbook 2019 / 2020’, Accessed on September 20, 2020.
  • Kayalak, S. and Özcelik, A. 2012. ‘Hazelnut policies in Turkey and in the world’, The Turkish Journal of Agricultural Economics, 18(2):43–53.
  • Kleinberg, J., M. 1999. ‘Authoritative sources in a hyperlinked environment’, Journal of the ACM, 46(5), 604–632. https://doi.org/10.1145/324133.324140
  • Marongiu, S. 2005. ‘An econometric analysis to evaluate hazelnut price formation on the international hazelnut market’, New Medit N. 4/2005, pp.14-20. Newman, M.E.J. 2010. ‘Networks: An introduction’, Oxford University Press. ISBN 978-0-19-920665-0
  • OECD (2009. ‘Applications of complexity science for public policy- new tools for finding unanticipated consequences and unrealized opportunities’, https://www.oecd.org/science/publicationsdocuments/reports/24/ Accessed on June 07, 2020.
  • Pan, C., Chang, T. and Wolde-Rufael, Y. 2015. ‘Military spending and economic growth in the middle east countries: bootstrap panel causality test’, Defence and Peace Economics, 26 (24), 443-456.
  • Pesaran, M. H. 2004. ‘General diagnostic tests for cross section dependence in panels’, CWPE, 0435.
  • Pesaran, M. H. 2007. ‘A simple panel unit root test in the presence of cross-section dependence’, Journal of Applied Econometrics, 22(2), 265–312. https://doi.org/10.1002/jae.951
  • Pesaran, M. H. and Yamagata T. 2008. ‘Testing slope homogeneity in large panels’, Journal of Econometrics, 142(1), 50-93.
  • R igraph manual pages. https://igraph.org/r/doc/fit_power_law.html Accessed on June 10, 2020.
  • Republic of Turkey Ministry of Customs and Trade, (2019. ‘Directorate general of cooperatives directorate general of cooperatives’, Hazelnut Report. http://koop.gtb.gov.tr/data/5ad06bb9ddee7dd8b423eb23/2017%20F%C4%B1nd%C4%B1k%20Raporu.pdf Reichardt, J. 2009. ‘Introduction to complex networks’, Springer-Verlag, Berlin Heidelberg.
  • Ruzzenenti, F., Garlaschelli, D. and Basosi, R. 2010. ‘Complex networks and symmetry II: Reciprocity and evolution of world trade’, Symmetry, 2(3), 1710–1744. https://doi.org/10.3390/sym2031710
  • Sisman, M.Y. 2020. ‘Market imperfections and competition: An empirical analysis on the Turkish hazelnut markets’, Turkey’s Economic, Fiscal and Social Problems (March).
  • Tanrivermis, H. 2008. ‘Comparative economic assessment of conventional and organic hazelnut farming in Turkey:
  • Results of questionnaires from three years’, Biological Agriculture and Horticulture 26(3):235–67. Westerlund, J. 2008. ‘Panel cointegration tests of the fisher effect’, Journal of Applied Econometrics, 23(2), 193-233.
  • Yavuz, F., Avni, B. R., Peker, K. and Atsan, T. 2005. ‘Econometric Modeling of Turkey’s Hazelnut Sector : Implications on Recent Policies’, Turk J Agric For 29:1–7.
  • Yerdelen Tatoglu, F. 2013. ‘İleri panel veri analizi stata uygulamali’, 2nd ed. Beta, İstanbul.
There are 36 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering, Business Administration
Journal Section Research
Authors

Kiymet Yavuzaslan 0000-0002-3016-3084

Semanur Soyyiğit 0000-0002-5679-6875

Publication Date July 31, 2022
Submission Date December 28, 2021
Published in Issue Year 2022 Volume: 28 Issue: 1

Cite

APA Yavuzaslan, K., & Soyyiğit, S. (2022). The evolution of international hazelnut trade and determinants of export impact. Tarım Ekonomisi Dergisi, 28(1), 55-65. https://doi.org/10.24181/tarekoder.1049847
AMA Yavuzaslan K, Soyyiğit S. The evolution of international hazelnut trade and determinants of export impact. TJAE. July 2022;28(1):55-65. doi:10.24181/tarekoder.1049847
Chicago Yavuzaslan, Kiymet, and Semanur Soyyiğit. “The Evolution of International Hazelnut Trade and Determinants of Export Impact”. Tarım Ekonomisi Dergisi 28, no. 1 (July 2022): 55-65. https://doi.org/10.24181/tarekoder.1049847.
EndNote Yavuzaslan K, Soyyiğit S (July 1, 2022) The evolution of international hazelnut trade and determinants of export impact. Tarım Ekonomisi Dergisi 28 1 55–65.
IEEE K. Yavuzaslan and S. Soyyiğit, “The evolution of international hazelnut trade and determinants of export impact”, TJAE, vol. 28, no. 1, pp. 55–65, 2022, doi: 10.24181/tarekoder.1049847.
ISNAD Yavuzaslan, Kiymet - Soyyiğit, Semanur. “The Evolution of International Hazelnut Trade and Determinants of Export Impact”. Tarım Ekonomisi Dergisi 28/1 (July 2022), 55-65. https://doi.org/10.24181/tarekoder.1049847.
JAMA Yavuzaslan K, Soyyiğit S. The evolution of international hazelnut trade and determinants of export impact. TJAE. 2022;28:55–65.
MLA Yavuzaslan, Kiymet and Semanur Soyyiğit. “The Evolution of International Hazelnut Trade and Determinants of Export Impact”. Tarım Ekonomisi Dergisi, vol. 28, no. 1, 2022, pp. 55-65, doi:10.24181/tarekoder.1049847.
Vancouver Yavuzaslan K, Soyyiğit S. The evolution of international hazelnut trade and determinants of export impact. TJAE. 2022;28(1):55-6.