Research Article
BibTex RIS Cite

The effects of organic materials obtained from different sources on some properties of sandy loam soil

Year 2021, Volume: 9 Issue: 1, 30 - 38, 17.06.2021
https://doi.org/10.33409/tbbbd.881352

Abstract

The addition of organic materials to the soil is important due to the sustainability of soil resources and their positive contribution to
soil properties. Many materials that are added to the soil as a source of organic matter have direct positive effects, such as storing
and storing carbon in the soil, as well as improving the physical, chemical and biological properties of the soil. Leonardite is one of
the most preferred organic soil conditioner, which is rich in humic acid and formed by oxidizing organic materials without being
affected by carbonization processes. Due to having high humic acid and carbon content, it has an important place in terms of soil
improvement and vegetative production. This study was carried out to determine the short-term effects of leonardite obtained from
two different sources ((Kayseri-Develi (DL) and Çanakkale-Yenice (YL)) on some properties of the soil with sandy loam (SL). For
this purpose, each leonardite type was mixed with sandy loam (SL) soil at the rate of five different doses (4%, 8%, 12%, 16%, 20%)
and they were incubated for three months. Soil organic matter (OM), soil reaction (pH), electrical conductivity (EC), lime content
(CaCO3), bulk density (dB), saturated hydraulic conductivity (Ks), aggregate stability (AS) and total porosity (P) of mixtures were
determined at the end of the incubation period to investigate the effects of leonardite. Leonardite applications increased EC (236%),
OM (213%), AS (50%) and P (11%) while decreased dB (10%) compared to control (p≤0.05). However, changes in other
parameters (pH, CaCO3, Ks) were not found significant statistically (p≥ 0.05). In general, it was determined that the effect of the
leonardite type on the parameters investigated was not significant (p≥ 0.05).

References

  • Acosta-Martínez V, Zobeck TM, Gill TE, Kennedy AC, ,2003. Enzyme activities and microbial community structure in semiarid agricultural soils. Biology and Fertility of soils 38:216–227.
  • Ahmad I, Ali S, Khan K, et al., 2015. Use of Coal Derived Humic Acid as Soil Conditioner to Improve Soil Physical Properties and Wheat Yield. International Journal of Plant & Soil Science 5:268–275. doi: 10.9734/ijpss/2015/14410
  • Allison LE, Richards LA, 1954. Diagnosis and improvement of saline and alkali soils. Soil and Water Conservative Research Branch, Agricultural Research Service …
  • Amoozegar A, Warrick AW, 1986. Hydraulic conductivity of saturated soils: field methods. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods 5:735–770.
  • Arshad MA, Martin S, 2002. Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture, Ecosystems & Environment 88:153–160.
  • Blair N, Faulkner RD, Till AR, et al., 2006a. Long-term management impacts on soil C, N and physical fertility: Part II: Bad Lauchstadt static and extreme FYM experiments. Soil and Tillage Research 91:39–47.
  • Blair N, Faulkner RD, Till AR, Poulton PR, 2006b. Long-term management impacts on soil C, N and physical fertility: Part I: Broadbalk experiment. Soil and Tillage Research 91:30–38.
  • Blake GR, 1965. Bulk density. Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling 9:374–390.
  • Bouyoucos GJ, 1951. A recalibration of the hydrometer method for making mechanical analysis of soils 1. Agronomy journal 43:434–438.
  • Chaney K, Swift RS, 1984. The influence of organic matter on aggregate stability in some British soils. Journal of Soil science 35:223–230.
  • Ciarkowska K, Sołek-Podwika K, Filipek-Mazur B, Tabak M, 2017. Comparative effects of lignite-derived humic acids and FYM on soil properties and vegetable yield. Geoderma 303:85–92.
  • Ece A, Saltali K, Eryiǧit N, Uysal F, 2007. The effects of leonardite applications on climbing bean (Phaseolus vulgaris L.) yield and the some soil properties. Journal of Agronomy 6:480–483. doi: 10.3923/ja.2007.480.483
  • İlay R, Kavdir Y, 2018. Impact of land cover types on soil aggregate stability and erodibility. Environmental Monitoring and Assessment 525. doi: 10.1007/s10661-018-6847-4
  • Kavdır Y, Ekinci H, Yüksel O, Mermut AR, 2005. Soil aggregate stability and 13C CP/MAS-NMR assessment of organic matter in soils influenced by forest wildfires in Canakkale, Turkey. Geoderma 129:219–229.
  • Kemper WD, Rosenau RC, 1986. Aggregate stability and size distribution. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods 5:425–442.
  • Li Y, Fang F, Wei J, et al, 2019. Humic Acid Fertilizer Improved Soil Properties and Soil Microbial Diversity of Continuous Cropping Peanut: A Three-Year Experiment. Scientific Reports 9:1–9. doi: 10.1038/s41598-019-48620-4
  • Pekcan T, Esetlİlİ Ç, 2017. Leonardit K__kenli Organik Materyallerin Baz__ Fiziksel ve Kimyasal __zelliklerinin Belirlenmesi[#429456]-481870. 41:31–41.
  • Pritchett K, Kennedy AC, Cogger CG, 2011. Management effects on soil quality in organic vegetable systems in western Washington. Soil Science Society of America Journal 75:605–615.
  • Schlichting E, Blume HP, 1966. Bodenkundliches Praktikum: Verlag Paul Parey.
  • Schumacher BA, 2002. Methods for the determination of total organic carbon (TOC) in soils and sediments.
  • Smith HW, Weldon MD, 1941. A Comparison of Some Methods for the Determination of Soil Organic Matter 1. Soil Science Society of America Journal 5:177–182.
  • Whitbread AM, Blair GJ, Lefroy RDB, 2000. Managing legume leys, residues and fertilisers to enhance the sustainability of wheat cropping systems in Australia: 2. Soil physical fertility and carbon. Soil and Tillage Research 54:77–89.

Farklı kaynaklardan elde edilen organik materyalin kumlu tın bünyeli toprağın bazı özellikleri üzerine etkileri

Year 2021, Volume: 9 Issue: 1, 30 - 38, 17.06.2021
https://doi.org/10.33409/tbbbd.881352

Abstract

Organik materyaller toprakların sürdürülebilir olmasında önemli yer tutmaktadır. Toprağa organik madde kaynağı olarak ilave
edilen birçok materyal, karbonun toprakta tutulması ve depolanması gibi doğrudan olumlu etkisinin yanında toprağın fiziksel,
kimyasal ve biyolojik özelliklerini iyileştirici etkiye sahiptir. Organik toprak düzenleyici olarak en çok tercih edilen materyallerden
biri olan leonardit; organik maddelerin kömürleşme süreçlerinden etkilenmeyerek oksitlenmesiyle oluşan ve humik asitçe zengin
doğal bir materyaldir. Humik asitçe zengin olması ve yüksek karbon içeriği, toprak ıslahı ve bitkisel üretim açısından önemli bir yer
tutmaktadır. Bu çalışma, Kayseri-Develi (DL) ve Çanakkale-Yenice (YL) olmak üzere iki farklı bölgeden temin edilen leonarditin
kumlu tın (SL) bünyeye sahip toprağın bazı özeliklerine kısa süreli etkilerini tespit etmek amacıyla yapılmıştır. Bu amaçla leonardit
çeşitleri beş farklı dozda (%4, %8, %12, %16, %20) kumlu tın (SL) bünyeye sahip toprak ile karıştırılarak üç ay inkübe edilmiştir.
İnkübasyon süresi sonunda tüm uygulamalar için toprağın organik maddesi (OM), toprak reaksiyonu (pH), elektriksel iletkenliği
(EC), kireç içeriği (CaCO3), kuru hacim ağırlığı (dB), hidrolik iletkenliği (Ks), agregat stabilitesi (AS) ve boşluk hacmi (P) gibi
özellikleri belirlenerek leonarditlerin etkisi araştırılmıştır. Uygulanan dozlara bakılmaksızın her iki leonardit uygulamasıyla
kontrole göre EC (%236), OM (%213), AS (%50), P (%11) artarken, dB (%10) azalmıştır (p≤0.05). Buna rağmen diğer
parametrelerdeki değişimler (pH, CaCO3, Ks) istatistiksel olarak önemsiz bulunmuştur (p≥0.05). Genel olarak leonardit çeşidinin
incelenen parametreler üzerine etkisinin önemsiz (p≥0.05) olduğu tespit edilmiştir.

References

  • Acosta-Martínez V, Zobeck TM, Gill TE, Kennedy AC, ,2003. Enzyme activities and microbial community structure in semiarid agricultural soils. Biology and Fertility of soils 38:216–227.
  • Ahmad I, Ali S, Khan K, et al., 2015. Use of Coal Derived Humic Acid as Soil Conditioner to Improve Soil Physical Properties and Wheat Yield. International Journal of Plant & Soil Science 5:268–275. doi: 10.9734/ijpss/2015/14410
  • Allison LE, Richards LA, 1954. Diagnosis and improvement of saline and alkali soils. Soil and Water Conservative Research Branch, Agricultural Research Service …
  • Amoozegar A, Warrick AW, 1986. Hydraulic conductivity of saturated soils: field methods. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods 5:735–770.
  • Arshad MA, Martin S, 2002. Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture, Ecosystems & Environment 88:153–160.
  • Blair N, Faulkner RD, Till AR, et al., 2006a. Long-term management impacts on soil C, N and physical fertility: Part II: Bad Lauchstadt static and extreme FYM experiments. Soil and Tillage Research 91:39–47.
  • Blair N, Faulkner RD, Till AR, Poulton PR, 2006b. Long-term management impacts on soil C, N and physical fertility: Part I: Broadbalk experiment. Soil and Tillage Research 91:30–38.
  • Blake GR, 1965. Bulk density. Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling 9:374–390.
  • Bouyoucos GJ, 1951. A recalibration of the hydrometer method for making mechanical analysis of soils 1. Agronomy journal 43:434–438.
  • Chaney K, Swift RS, 1984. The influence of organic matter on aggregate stability in some British soils. Journal of Soil science 35:223–230.
  • Ciarkowska K, Sołek-Podwika K, Filipek-Mazur B, Tabak M, 2017. Comparative effects of lignite-derived humic acids and FYM on soil properties and vegetable yield. Geoderma 303:85–92.
  • Ece A, Saltali K, Eryiǧit N, Uysal F, 2007. The effects of leonardite applications on climbing bean (Phaseolus vulgaris L.) yield and the some soil properties. Journal of Agronomy 6:480–483. doi: 10.3923/ja.2007.480.483
  • İlay R, Kavdir Y, 2018. Impact of land cover types on soil aggregate stability and erodibility. Environmental Monitoring and Assessment 525. doi: 10.1007/s10661-018-6847-4
  • Kavdır Y, Ekinci H, Yüksel O, Mermut AR, 2005. Soil aggregate stability and 13C CP/MAS-NMR assessment of organic matter in soils influenced by forest wildfires in Canakkale, Turkey. Geoderma 129:219–229.
  • Kemper WD, Rosenau RC, 1986. Aggregate stability and size distribution. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods 5:425–442.
  • Li Y, Fang F, Wei J, et al, 2019. Humic Acid Fertilizer Improved Soil Properties and Soil Microbial Diversity of Continuous Cropping Peanut: A Three-Year Experiment. Scientific Reports 9:1–9. doi: 10.1038/s41598-019-48620-4
  • Pekcan T, Esetlİlİ Ç, 2017. Leonardit K__kenli Organik Materyallerin Baz__ Fiziksel ve Kimyasal __zelliklerinin Belirlenmesi[#429456]-481870. 41:31–41.
  • Pritchett K, Kennedy AC, Cogger CG, 2011. Management effects on soil quality in organic vegetable systems in western Washington. Soil Science Society of America Journal 75:605–615.
  • Schlichting E, Blume HP, 1966. Bodenkundliches Praktikum: Verlag Paul Parey.
  • Schumacher BA, 2002. Methods for the determination of total organic carbon (TOC) in soils and sediments.
  • Smith HW, Weldon MD, 1941. A Comparison of Some Methods for the Determination of Soil Organic Matter 1. Soil Science Society of America Journal 5:177–182.
  • Whitbread AM, Blair GJ, Lefroy RDB, 2000. Managing legume leys, residues and fertilisers to enhance the sustainability of wheat cropping systems in Australia: 2. Soil physical fertility and carbon. Soil and Tillage Research 54:77–89.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Articles
Authors

Remzi İlay 0000-0002-3558-3125

Meltem Aktaş 0000-0002-8568-045X

Nuri Burak Aslantekin 0000-0002-0156-9130

Hasan Özcan 0000-0002-3476-1241

Publication Date June 17, 2021
Published in Issue Year 2021 Volume: 9 Issue: 1

Cite

APA İlay, R., Aktaş, M., Aslantekin, N. B., Özcan, H. (2021). Farklı kaynaklardan elde edilen organik materyalin kumlu tın bünyeli toprağın bazı özellikleri üzerine etkileri. Toprak Bilimi Ve Bitki Besleme Dergisi, 9(1), 30-38. https://doi.org/10.33409/tbbbd.881352
AMA İlay R, Aktaş M, Aslantekin NB, Özcan H. Farklı kaynaklardan elde edilen organik materyalin kumlu tın bünyeli toprağın bazı özellikleri üzerine etkileri. tbbbd. June 2021;9(1):30-38. doi:10.33409/tbbbd.881352
Chicago İlay, Remzi, Meltem Aktaş, Nuri Burak Aslantekin, and Hasan Özcan. “Farklı Kaynaklardan Elde Edilen Organik Materyalin Kumlu tın bünyeli toprağın Bazı özellikleri üzerine Etkileri”. Toprak Bilimi Ve Bitki Besleme Dergisi 9, no. 1 (June 2021): 30-38. https://doi.org/10.33409/tbbbd.881352.
EndNote İlay R, Aktaş M, Aslantekin NB, Özcan H (June 1, 2021) Farklı kaynaklardan elde edilen organik materyalin kumlu tın bünyeli toprağın bazı özellikleri üzerine etkileri. Toprak Bilimi ve Bitki Besleme Dergisi 9 1 30–38.
IEEE R. İlay, M. Aktaş, N. B. Aslantekin, and H. Özcan, “Farklı kaynaklardan elde edilen organik materyalin kumlu tın bünyeli toprağın bazı özellikleri üzerine etkileri”, tbbbd, vol. 9, no. 1, pp. 30–38, 2021, doi: 10.33409/tbbbd.881352.
ISNAD İlay, Remzi et al. “Farklı Kaynaklardan Elde Edilen Organik Materyalin Kumlu tın bünyeli toprağın Bazı özellikleri üzerine Etkileri”. Toprak Bilimi ve Bitki Besleme Dergisi 9/1 (June 2021), 30-38. https://doi.org/10.33409/tbbbd.881352.
JAMA İlay R, Aktaş M, Aslantekin NB, Özcan H. Farklı kaynaklardan elde edilen organik materyalin kumlu tın bünyeli toprağın bazı özellikleri üzerine etkileri. tbbbd. 2021;9:30–38.
MLA İlay, Remzi et al. “Farklı Kaynaklardan Elde Edilen Organik Materyalin Kumlu tın bünyeli toprağın Bazı özellikleri üzerine Etkileri”. Toprak Bilimi Ve Bitki Besleme Dergisi, vol. 9, no. 1, 2021, pp. 30-38, doi:10.33409/tbbbd.881352.
Vancouver İlay R, Aktaş M, Aslantekin NB, Özcan H. Farklı kaynaklardan elde edilen organik materyalin kumlu tın bünyeli toprağın bazı özellikleri üzerine etkileri. tbbbd. 2021;9(1):30-8.