It is a difficult problem to predict the one-day next
closing price of bank stocks. Because there are many factors affecting stock
prices. In this study, using data from 1 January 2016 to 9 May 2019 date and some bank stocks have been tried to predict the closing prices of the next
day. The decision tree, multiple
regression, and random forest methods were used in developing the estimation model
due to finding linear patterns in stock movements. Two different sets of input
variables were used for the models created with these methods. There are 50
indicators consisting of 46 techniques and 4 fundamental indicators in the
first input variable set. The second input variable set, as a result of the
reduction in technical indicators there is a total of 33 indicators consisting
of 29 technical indicators and 4 basic indicators. For these two different
input variable sets, the estimation performance of both models was evaluated by
the R2 criteria. When the R2 results were analyzed, it was seen that the reduction in
the technical indicator had a positive effect on the predictive performance of
the models.
prediction stock price decision tree multiple regression random forest technical and basic indicators
Banka hisse
senetlerinin bir gün sonraki kapanış fiyatını tahmin etmek zor bir problemdir. Çünkü
hisse senetleri fiyatlarını etkileyen çok sayıda etken vardır. Bu çalışmada 1
Ocak 2016 - 9 Mayıs 2019 tarihleri arasındaki veriler ele alınarak bazı banka
hisse senetlerinin bir gün sonraki kapanış fiyatları tahmin edilmeye
çalışılmıştır. Hisse senedi hareketlerinde doğrusal örüntülere rastlanması
sebebiyle tahmin modeli geliştirilirken karar ağacı, çoklu regresyon ve rassal
orman yöntemlerinden yararlanılmıştır. Bu yöntemlerle oluşturulan modeller için
iki farklı girdi değişken kümesi kullanılmıştır. Birinci veri kümesinde, 46
teknik ve 4 temel göstergeden oluşan toplam 50 gösterge vardır. İkincisi ise
teknik göstergelerde yapılan indirgemeler sonucunda 29 teknik gösterge ve 4
temel göstergeden oluşan toplam 33 göstergeden meydana gelmektedir. Bu iki
farklı girdi değişken kümesi için her iki modelin tahmin performansı R2
ölçütü ile değerlendirilmiştir. R2 sonuçları incelendiğinde, teknik
göstergede yapılan indirgemenin modellerin tahmin performansını olumlu yönde
etkilediği görülmüştür.
tahmin hisse senedi fiyatı karar ağacı çoklu regresyon rassal orman teknik ve temel gösterge
Primary Language | Turkish |
---|---|
Journal Section | Makaleler(Araştırma) |
Authors | |
Publication Date | December 17, 2019 |
Published in Issue | Year 2019 Volume: 12 Issue: 2 |
Article Acceptance
Use user registration/login to upload articles online.
The acceptance process of the articles sent to the journal consists of the following stages:
1. Each submitted article is sent to at least two referees at the first stage.
2. Referee appointments are made by the journal editors. There are approximately 200 referees in the referee pool of the journal and these referees are classified according to their areas of interest. Each referee is sent an article on the subject he is interested in. The selection of the arbitrator is done in a way that does not cause any conflict of interest.
3. In the articles sent to the referees, the names of the authors are closed.
4. Referees are explained how to evaluate an article and are asked to fill in the evaluation form shown below.
5. The articles in which two referees give positive opinion are subjected to similarity review by the editors. The similarity in the articles is expected to be less than 25%.
6. A paper that has passed all stages is reviewed by the editor in terms of language and presentation, and necessary corrections and improvements are made. If necessary, the authors are notified of the situation.
. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.