Research Article
BibTex RIS Cite

The Usage of Quantum Computer and Computing for High Performance in Machine Learning Methods

Year 2021, Volume: 14 Issue: 1, 47 - 56, 28.06.2021
https://doi.org/10.54525/tbbmd.845472

Abstract

Today, multi-core, multi-processor and graphic processor computers are used to meet the increasing performance needs of machine learning methods that require high computational power. Although these technologies enable the methods to accelerate, they are not sufficient to be implemented and developed in a practical way. In this study, the current and potential uses of quantum computing methods and quantum computers, which have just started to be applied in the laboratory environment, on machine learning methods are discussed. Quantum computing and its use in machine learning methods are discussed under three headings: quantum-inspired algorithms, hybrid quantum algorithms and quantum algorithms. Nowadays, quantum-inspired algorithms are widely applied that enable improvement of existing methods by taking advantage of quantum computing. Accelerations are achieved with hybrid quantum systems that have sub-threads made by quantum computers. For machine learning methods working entirely on quantum computers, it is necessary to eliminate the hardware disadvantages of quantum computers and to develop more quantum-based methods. In general, studies are of the opinion that by solving the memory problem of quantum computers, there will be ground-breaking developments in the field of machine learning.

References

  • Şeker A., Diri, B. ve Balık, H., Derin Öğrenme Yöntemleri ve Uygulamaları Hakkında Bir İnceleme, Gazi Mühendislik Bilimleri Dergisi, 3(3), 47-64, 2017.
  • Xiu, L., Time Moore: Exploiting Moore's Law From The Perspective of Time, IEEE Solid-State Circuits Magazine, cilt 11, no. 1, pp. 39-55, 2019.
  • Gates, M., Heath, M. T. ve Lambros, J., High-performance hybrid CPU and GPU parallel algorithm for digital volume correlation, The International Journal of High Performance Comp. Applications, 29(1), 92-106, 2015.
  • Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe N. ve Lloyd, S., Quantum machine learning, Nature, cilt 549, no. 7671, p. 195–202, 2017.
  • Ciliberto, C., Herbster, M., Ialongo, A. D., Pontil, M., Rocchetto, A., Severini, S. ve Wossnig, L., Quantum machine learning: A classical perspective, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, cilt 474, no. 2209, 2018.
  • Adcock, J. , Allen, E., Day, M., Frick, S., Hinchliff, J., Johnson, M., Morley-Short, S., Pallister, S., Price, A. ve Stanisic, S., Advances in quantum machine learning, arXiv preprint arXiv:1512.02900v1, 2015.
  • ACM, Super Computing’s Super Energy Needs, and What to Do About Them, Url: https://cacm.acm.org/news/192296-supercomputings-super-energy-needs-and-what-to-do-about-them/fulltext, Erişim: 22.12.2020.
  • Elsayed, N., Maida, A. S. ve Bayoumi, M., A Review of Quantum Computer Energy Efficiency, IEEE Green Technologies Conference, 2019.
  • Grumbling, E. ve Horowitz, M., Quantum Computing: Progress and Prospects, National Academies Press, 2018.
  • Almudever, C. G., The engineering challenges in quantum computing, IEEE Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.
  • Upadhyay G. ve Nene, M. J., One time pad generation using quantum superposition states, IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, 2017.
  • Li, T. ve Yin, Z., Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator, Science Bulletin, cilt 61, no. 2, pp. 163-171, 2016.
  • Theurer, T., Resource theory of superposition, Physical review letters, cilt 119, no. 23, 2017.
  • Yetis, H. ve Karakose, M., Performance Comparison of Population-Based Quantum-Inspired Evolutionary Algorithms, IEEE 1st International Informatics and Software Engineering Conference (UBMYK), 2019.
  • Panchi, L. I. ve Zhao, Y., Model and algorithm of sequence-based quantum-inspired neural networks, Chinese Journal of Electronics, 27(1), 9-18, 2018.
  • Liu, W., Quantum searchable encryption for cloud data based on full-blind quantum computation, Access, 2019.
  • Yu, Y., A nested tensor product model transformation, IEEE Transactions on Fuzzy Systems, 27(1), 1-15, 2018.
  • Adachi, S. H. ve Henderson, M. P., Application of quantum annealing to training of deep neural networks, arXiv preprint arXiv:1510.06356, 2015.
  • Crawford, D., Levit, A., Ghadermarzy, N., Oberoi, J. S. ve Ronagh, P., Reinforcement learning using quantum boltzmann machines, arXiv preprint:1612.05695, 2016.
  • Hauke, P. vd., Perspectives of quantum annealing: Methods and implementations, Reports on Progress in Physics, cilt 83, no. 5, 2020.
  • Liu, J. vd., Adiabatic quantum computation applied to deep learning networks, Entropy, 20(5), 1-28, 2018.
  • Singh, J. ve Singh, M., Evolution in Quantum Computing, Proceedings of the 5th International Conference on System Modeling and Advancement in Research Trends (SMART), 2016.
  • Zhang, G., Quantum-inspired evolutionary algorithms: a survey and empirical study, Journal of Heuristics, cilt 17, no. 3, pp. 303-351, 2011.
  • Karmakar, S., Dey, A. ve Saha, I., Use of quantum-inspired metaheuristics during last two decades, 7th International Conference on Communication Systems and Network Technologies, 2017.
  • Patel, O. P. vd., A novel quantum-inspired fuzzy based neural network for data classification, IEEE Transactions on Emerging Topics in Computing, Erken Erişim.
  • Kerenidis, I. ve Prakash, A., Quantum recommendation systems, arXiv preprint arXiv:1603.08675, 2016.
  • Tang, E., A quantum-inspired classical algorithm for recommendation systems, 51st Annual ACM SIGACT Symposium on Theory of Computing, 2019.
  • Panchi, L. ve Ya, Z., Model and algorithm of sequence-based quantum-inspired neural networks, Chinese Journal of Electronics, cilt 27, no. 1, pp. 9-18., 2018.
  • Wiebe, N., Kapoor, A. ve Svore, K. M., Quantum deep learning, arXiv preprint arXiv:1412.3489, 2014.
  • Wiebe N. vd., Quantum inspired training for Boltzmann machines, arXiv preprint arXiv:1507.02642, 2015.
  • Zhou, S., Qingcai, C. ve Xiaolong, W., Deep quantum networks for classification, IEEE 20th International Conference on Pattern Recognition, 2010.
  • Lahoz-Beltra, R., Quantum genetic algorithms for computer scientists, Computers, cilt 5, no. 4, 2016.
  • Zhang, Y. ve Ni, Q. Recent advances in quantum machine learning, Quantum Engineering, cilt 2, no. 1, 2020.
  • Potok, T. E. vd., A study of complex deep learning networks on high-performance, neuromorphic, and quantum computers, ACM Journal on Emerging Technologies in Computing Systems (JETC) , cilt 14, no. 2, pp. 1-21, 2018.
  • Dunjko, V., Taylor, J. M. ve Briegel, H. J., Quantum-enhanced machine learning, Physical review letters, cilt 117, no. 13, 2016.
  • Benedetti, M., Realpe-Gómez, J. ve Perdomo-Ortiz, A., Quantum-assisted helmholtz machines: a quantum–classical deep learning framework for industrial datasets in near-term devices, Quantum Science and Technology, cilt 3, no. 3, 2018.
  • NASA QuAIL, NASA Quantum Artificial Intelligence Laboratory, Url: https://ti.arc.nasa.gov/tech/dash/groups/quail/, Erişim Tarihi: 22.12.2020.
  • da Silva, A. J., Ludermir, T. B. ve de Oliveira, W. R., Quantum perceptron over a field and neural network architecture selection in a quantum computer, Neural Networks, cilt 76, pp. 55-64, 2016.
  • Schuld, M., Sinayskiy, I. ve Petruccione, F., Simulating a perceptron on a quantum computer, Physics Letters, Section A: General, Atomic and Solid State Physics, cilt 379, no. 7, p. 660–66, 2015.
  • Tacchino, F., Macchiavello, C., Gerace, D. ve Bajoni, D., An artificial neuron implemented on an actual quantum processor, Npj Quantum Information, 5(1), 1-8, 2019.
  • Steinbrecher, G. R., Quantum optical neural networks, npj Quantum Information, cilt 5, no. 1, pp. 1-9, 2019.
  • Amin, M. H., Quantum boltzmann machine, Physical Review X, cilt 8, no. 2, 2018.
  • Nguyen, N., Thuy, T. ve Kenyon, G., Comparing deep learning with quantum inference on the D-Wave 2X, 3rd International Workshop On Post-Moore’s Era Supercomputing (PMES), 2018.
  • Farhi, E. ve Neven, H., Classification with quantum neural networks on near term processors, arXiv preprint arXiv:1802.06002, 2018.
  • Benedetti, M., Quantum-assisted learning of hardware-embedded probabilistic graphical models, Physical Review X , cilt 7, no. 4, 2017.
  • Wiebe, N., Kapoor, A. ve Svore, K. M., Quantum deep learning, arXiv preprint arXiv:1412.3489, 2014.
  • Sagheer, A. ve Zidan, M., Autonomous quantum perceptron neural network, arXiv preprint arXiv:1312.4149, 2013.
  • Verdon, G., Pye J., Broughton, M., A universal training algorithm for quantum deep learning, arXiv preprint arXiv:1806.09729, 2018.
  • Kerenidis, I., Landman, J. ve Prakash, A., Quantum algorithms for deep convolutional neural networks, arXiv preprint arXiv:1911.01117,2019.

Makine Öğrenmesi Yöntemlerinde Yüksek Başarım için Kuantum Bilgisayar ve Hesaplamanın Kullanımı

Year 2021, Volume: 14 Issue: 1, 47 - 56, 28.06.2021
https://doi.org/10.54525/tbbmd.845472

Abstract

Günümüzde yüksek hesaplama gücü gerektiren makine öğrenmesi yöntemlerinin artmakta olan performans ihtiyaçlarını karşılamak için çok çekirdekli, çok işlemcili ve grafik işlemcili bilgisayarlar kullanılmaktadır. Bu teknolojiler yöntemlerin hızlanmasını sağlasa da, pratik bir şekilde gerçekleştirilip geliştirilmesi için yeterli değillerdir. Bu çalışmada henüz laboratuvar ortamında uygulamaları başlanan kuantum bilgisayarların ve kuantum hesaplama yöntemlerinin makine öğrenmesi yöntemleri üzerinde mevcut ve potansiyel kullanımları ele alınmaktadır. Kuantum bilgisayar ve hesaplamanın makine öğrenmesi yöntemlerinde kullanımı, kuantum uyarlamalı algoritmalar, hibrit kuantum algoritmalar ve kuantum algoritmalar olmak üzere üç başlıkta ele alınmıştır. Günümüzde kuantum hesaplamanın avantajlarından yararlanarak mevcut yöntemlerin iyileştirmesini sağlayan kuantum uyarlamalı algoritmalar yaygın olarak uygulanmaktadır. Alt iş parçacıklarının kuantum bilgisayarlara yaptırılmasını amaçlayan hibrit kuantum sistemler ile hızlanmalar elde edilmektedir. Tamamen kuantum bilgisayarlarda çalışan makine öğrenmesi yöntemleri için ise kuantum bilgisayarların sahip oldukları donanımsal dezavantajların ortadan kaldırılması ve daha çok kuantum yöntem geliştirilmesi gerekmektedir. Genel olarak yapılan çalışmalar, kuantum bilgisayarların hafıza probleminin çözülmesi ile makine öğrenmesi alanında çığır açıcı gelişmeler olacağı görüşündedir.

References

  • Şeker A., Diri, B. ve Balık, H., Derin Öğrenme Yöntemleri ve Uygulamaları Hakkında Bir İnceleme, Gazi Mühendislik Bilimleri Dergisi, 3(3), 47-64, 2017.
  • Xiu, L., Time Moore: Exploiting Moore's Law From The Perspective of Time, IEEE Solid-State Circuits Magazine, cilt 11, no. 1, pp. 39-55, 2019.
  • Gates, M., Heath, M. T. ve Lambros, J., High-performance hybrid CPU and GPU parallel algorithm for digital volume correlation, The International Journal of High Performance Comp. Applications, 29(1), 92-106, 2015.
  • Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe N. ve Lloyd, S., Quantum machine learning, Nature, cilt 549, no. 7671, p. 195–202, 2017.
  • Ciliberto, C., Herbster, M., Ialongo, A. D., Pontil, M., Rocchetto, A., Severini, S. ve Wossnig, L., Quantum machine learning: A classical perspective, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, cilt 474, no. 2209, 2018.
  • Adcock, J. , Allen, E., Day, M., Frick, S., Hinchliff, J., Johnson, M., Morley-Short, S., Pallister, S., Price, A. ve Stanisic, S., Advances in quantum machine learning, arXiv preprint arXiv:1512.02900v1, 2015.
  • ACM, Super Computing’s Super Energy Needs, and What to Do About Them, Url: https://cacm.acm.org/news/192296-supercomputings-super-energy-needs-and-what-to-do-about-them/fulltext, Erişim: 22.12.2020.
  • Elsayed, N., Maida, A. S. ve Bayoumi, M., A Review of Quantum Computer Energy Efficiency, IEEE Green Technologies Conference, 2019.
  • Grumbling, E. ve Horowitz, M., Quantum Computing: Progress and Prospects, National Academies Press, 2018.
  • Almudever, C. G., The engineering challenges in quantum computing, IEEE Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.
  • Upadhyay G. ve Nene, M. J., One time pad generation using quantum superposition states, IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, 2017.
  • Li, T. ve Yin, Z., Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator, Science Bulletin, cilt 61, no. 2, pp. 163-171, 2016.
  • Theurer, T., Resource theory of superposition, Physical review letters, cilt 119, no. 23, 2017.
  • Yetis, H. ve Karakose, M., Performance Comparison of Population-Based Quantum-Inspired Evolutionary Algorithms, IEEE 1st International Informatics and Software Engineering Conference (UBMYK), 2019.
  • Panchi, L. I. ve Zhao, Y., Model and algorithm of sequence-based quantum-inspired neural networks, Chinese Journal of Electronics, 27(1), 9-18, 2018.
  • Liu, W., Quantum searchable encryption for cloud data based on full-blind quantum computation, Access, 2019.
  • Yu, Y., A nested tensor product model transformation, IEEE Transactions on Fuzzy Systems, 27(1), 1-15, 2018.
  • Adachi, S. H. ve Henderson, M. P., Application of quantum annealing to training of deep neural networks, arXiv preprint arXiv:1510.06356, 2015.
  • Crawford, D., Levit, A., Ghadermarzy, N., Oberoi, J. S. ve Ronagh, P., Reinforcement learning using quantum boltzmann machines, arXiv preprint:1612.05695, 2016.
  • Hauke, P. vd., Perspectives of quantum annealing: Methods and implementations, Reports on Progress in Physics, cilt 83, no. 5, 2020.
  • Liu, J. vd., Adiabatic quantum computation applied to deep learning networks, Entropy, 20(5), 1-28, 2018.
  • Singh, J. ve Singh, M., Evolution in Quantum Computing, Proceedings of the 5th International Conference on System Modeling and Advancement in Research Trends (SMART), 2016.
  • Zhang, G., Quantum-inspired evolutionary algorithms: a survey and empirical study, Journal of Heuristics, cilt 17, no. 3, pp. 303-351, 2011.
  • Karmakar, S., Dey, A. ve Saha, I., Use of quantum-inspired metaheuristics during last two decades, 7th International Conference on Communication Systems and Network Technologies, 2017.
  • Patel, O. P. vd., A novel quantum-inspired fuzzy based neural network for data classification, IEEE Transactions on Emerging Topics in Computing, Erken Erişim.
  • Kerenidis, I. ve Prakash, A., Quantum recommendation systems, arXiv preprint arXiv:1603.08675, 2016.
  • Tang, E., A quantum-inspired classical algorithm for recommendation systems, 51st Annual ACM SIGACT Symposium on Theory of Computing, 2019.
  • Panchi, L. ve Ya, Z., Model and algorithm of sequence-based quantum-inspired neural networks, Chinese Journal of Electronics, cilt 27, no. 1, pp. 9-18., 2018.
  • Wiebe, N., Kapoor, A. ve Svore, K. M., Quantum deep learning, arXiv preprint arXiv:1412.3489, 2014.
  • Wiebe N. vd., Quantum inspired training for Boltzmann machines, arXiv preprint arXiv:1507.02642, 2015.
  • Zhou, S., Qingcai, C. ve Xiaolong, W., Deep quantum networks for classification, IEEE 20th International Conference on Pattern Recognition, 2010.
  • Lahoz-Beltra, R., Quantum genetic algorithms for computer scientists, Computers, cilt 5, no. 4, 2016.
  • Zhang, Y. ve Ni, Q. Recent advances in quantum machine learning, Quantum Engineering, cilt 2, no. 1, 2020.
  • Potok, T. E. vd., A study of complex deep learning networks on high-performance, neuromorphic, and quantum computers, ACM Journal on Emerging Technologies in Computing Systems (JETC) , cilt 14, no. 2, pp. 1-21, 2018.
  • Dunjko, V., Taylor, J. M. ve Briegel, H. J., Quantum-enhanced machine learning, Physical review letters, cilt 117, no. 13, 2016.
  • Benedetti, M., Realpe-Gómez, J. ve Perdomo-Ortiz, A., Quantum-assisted helmholtz machines: a quantum–classical deep learning framework for industrial datasets in near-term devices, Quantum Science and Technology, cilt 3, no. 3, 2018.
  • NASA QuAIL, NASA Quantum Artificial Intelligence Laboratory, Url: https://ti.arc.nasa.gov/tech/dash/groups/quail/, Erişim Tarihi: 22.12.2020.
  • da Silva, A. J., Ludermir, T. B. ve de Oliveira, W. R., Quantum perceptron over a field and neural network architecture selection in a quantum computer, Neural Networks, cilt 76, pp. 55-64, 2016.
  • Schuld, M., Sinayskiy, I. ve Petruccione, F., Simulating a perceptron on a quantum computer, Physics Letters, Section A: General, Atomic and Solid State Physics, cilt 379, no. 7, p. 660–66, 2015.
  • Tacchino, F., Macchiavello, C., Gerace, D. ve Bajoni, D., An artificial neuron implemented on an actual quantum processor, Npj Quantum Information, 5(1), 1-8, 2019.
  • Steinbrecher, G. R., Quantum optical neural networks, npj Quantum Information, cilt 5, no. 1, pp. 1-9, 2019.
  • Amin, M. H., Quantum boltzmann machine, Physical Review X, cilt 8, no. 2, 2018.
  • Nguyen, N., Thuy, T. ve Kenyon, G., Comparing deep learning with quantum inference on the D-Wave 2X, 3rd International Workshop On Post-Moore’s Era Supercomputing (PMES), 2018.
  • Farhi, E. ve Neven, H., Classification with quantum neural networks on near term processors, arXiv preprint arXiv:1802.06002, 2018.
  • Benedetti, M., Quantum-assisted learning of hardware-embedded probabilistic graphical models, Physical Review X , cilt 7, no. 4, 2017.
  • Wiebe, N., Kapoor, A. ve Svore, K. M., Quantum deep learning, arXiv preprint arXiv:1412.3489, 2014.
  • Sagheer, A. ve Zidan, M., Autonomous quantum perceptron neural network, arXiv preprint arXiv:1312.4149, 2013.
  • Verdon, G., Pye J., Broughton, M., A universal training algorithm for quantum deep learning, arXiv preprint arXiv:1806.09729, 2018.
  • Kerenidis, I., Landman, J. ve Prakash, A., Quantum algorithms for deep convolutional neural networks, arXiv preprint arXiv:1911.01117,2019.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler(Derleme)
Authors

Hasan Yetiş 0000-0001-7608-3293

Mehmet Karaköse 0000-0002-3276-3788

Publication Date June 28, 2021
Published in Issue Year 2021 Volume: 14 Issue: 1

Cite

APA Yetiş, H., & Karaköse, M. (2021). Makine Öğrenmesi Yöntemlerinde Yüksek Başarım için Kuantum Bilgisayar ve Hesaplamanın Kullanımı. Türkiye Bilişim Vakfı Bilgisayar Bilimleri Ve Mühendisliği Dergisi, 14(1), 47-56. https://doi.org/10.54525/tbbmd.845472
AMA Yetiş H, Karaköse M. Makine Öğrenmesi Yöntemlerinde Yüksek Başarım için Kuantum Bilgisayar ve Hesaplamanın Kullanımı. TBV-BBMD. June 2021;14(1):47-56. doi:10.54525/tbbmd.845472
Chicago Yetiş, Hasan, and Mehmet Karaköse. “Makine Öğrenmesi Yöntemlerinde Yüksek Başarım için Kuantum Bilgisayar Ve Hesaplamanın Kullanımı”. Türkiye Bilişim Vakfı Bilgisayar Bilimleri Ve Mühendisliği Dergisi 14, no. 1 (June 2021): 47-56. https://doi.org/10.54525/tbbmd.845472.
EndNote Yetiş H, Karaköse M (June 1, 2021) Makine Öğrenmesi Yöntemlerinde Yüksek Başarım için Kuantum Bilgisayar ve Hesaplamanın Kullanımı. Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi 14 1 47–56.
IEEE H. Yetiş and M. Karaköse, “Makine Öğrenmesi Yöntemlerinde Yüksek Başarım için Kuantum Bilgisayar ve Hesaplamanın Kullanımı”, TBV-BBMD, vol. 14, no. 1, pp. 47–56, 2021, doi: 10.54525/tbbmd.845472.
ISNAD Yetiş, Hasan - Karaköse, Mehmet. “Makine Öğrenmesi Yöntemlerinde Yüksek Başarım için Kuantum Bilgisayar Ve Hesaplamanın Kullanımı”. Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi 14/1 (June 2021), 47-56. https://doi.org/10.54525/tbbmd.845472.
JAMA Yetiş H, Karaköse M. Makine Öğrenmesi Yöntemlerinde Yüksek Başarım için Kuantum Bilgisayar ve Hesaplamanın Kullanımı. TBV-BBMD. 2021;14:47–56.
MLA Yetiş, Hasan and Mehmet Karaköse. “Makine Öğrenmesi Yöntemlerinde Yüksek Başarım için Kuantum Bilgisayar Ve Hesaplamanın Kullanımı”. Türkiye Bilişim Vakfı Bilgisayar Bilimleri Ve Mühendisliği Dergisi, vol. 14, no. 1, 2021, pp. 47-56, doi:10.54525/tbbmd.845472.
Vancouver Yetiş H, Karaköse M. Makine Öğrenmesi Yöntemlerinde Yüksek Başarım için Kuantum Bilgisayar ve Hesaplamanın Kullanımı. TBV-BBMD. 2021;14(1):47-56.

Article Acceptance

Use user registration/login to upload articles online.

The acceptance process of the articles sent to the journal consists of the following stages:

1. Each submitted article is sent to at least two referees at the first stage.

2. Referee appointments are made by the journal editors. There are approximately 200 referees in the referee pool of the journal and these referees are classified according to their areas of interest. Each referee is sent an article on the subject he is interested in. The selection of the arbitrator is done in a way that does not cause any conflict of interest.

3. In the articles sent to the referees, the names of the authors are closed.

4. Referees are explained how to evaluate an article and are asked to fill in the evaluation form shown below.

5. The articles in which two referees give positive opinion are subjected to similarity review by the editors. The similarity in the articles is expected to be less than 25%.

6. A paper that has passed all stages is reviewed by the editor in terms of language and presentation, and necessary corrections and improvements are made. If necessary, the authors are notified of the situation.

0

.   This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.