İnternet üzerindeki uygulamalar kodlama kaynaklı bir takım güvenlik endişelerini barındırırlar. Zayıflıklar veya güvenlik açıkları, suçluların hassas verileri çalmak için veri tabanlarına doğrudan ve genel erişim elde etmesine olanak tanır. Bu çalışmada, web uygulama saldırılarının hibrit saldırı tespit sistemleri ile daha kolay ve daha doğru tespiti için sezgisel öznitelik seçimi ve makine öğrenmesine dayanan bir yaklaşım önerilmektedir. CIC-IDS2017 ve CSE-CIC-IDS2018 veri setlerindeki web uygulama saldırıları ve normal akış örnekleri bir dizi veri ön işleme aşaması sonrası birleştirilerek ve yeni bir veri seti oluşturuldu. Genetik Algoritma ve Lojistik Regresyon kullanılarak ortalama karesel hata ve öznitelik sayısı optimizasyonu gerçekleştirilip sonuçlar beş farklı makine öğrenmesi algoritması ile test edildi. Elde edilen sonuçlar incelendiğinde, öznitelik sayısının %85 oranında azaltılmasına rağmen sınıflandırmadaki başarım oranlarının %99 seviyesinde kaldığı gözlemlenmiştir.
web uygulama saldırısı makine öğrenmesi genetik algoritma öznitelik seçimi saldırı tespit sistemi
Applications on the Internet have some coding-related security concerns. Weaknesses or vulnerabilities allow criminals to gain direct and public access to databases to steal sensitive data. This study proposes an approach based on heuristic feature selection and machine learning for easier and more accurate detection of web application attacks with hybrid intrusion detection systems. Web application attacks and benign flow examples in CIC-IDS2017 and CSE-CIC-IDS2018 datasets were combined after a series of data preprocessing stages, and a new dataset was created. Using Genetic Algorithm and Logistic Regression, mean square error and feature count optimization were performed, and the results were tested with five different machine learning algorithms. When the results obtained were examined, it was observed that the success rate in classification remained at the level of 99%, although the number of features was reduced by 85%
web application attack machine learning genetic algorithm feature selection intrusion detection system
Primary Language | Turkish |
---|---|
Subjects | Engineering |
Journal Section | Makaleler(Araştırma) |
Authors | |
Publication Date | December 22, 2021 |
Published in Issue | Year 2021 Volume: 14 Issue: 2 |
Article Acceptance
Use user registration/login to upload articles online.
The acceptance process of the articles sent to the journal consists of the following stages:
1. Each submitted article is sent to at least two referees at the first stage.
2. Referee appointments are made by the journal editors. There are approximately 200 referees in the referee pool of the journal and these referees are classified according to their areas of interest. Each referee is sent an article on the subject he is interested in. The selection of the arbitrator is done in a way that does not cause any conflict of interest.
3. In the articles sent to the referees, the names of the authors are closed.
4. Referees are explained how to evaluate an article and are asked to fill in the evaluation form shown below.
5. The articles in which two referees give positive opinion are subjected to similarity review by the editors. The similarity in the articles is expected to be less than 25%.
6. A paper that has passed all stages is reviewed by the editor in terms of language and presentation, and necessary corrections and improvements are made. If necessary, the authors are notified of the situation.
. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.