Research Article
BibTex RIS Cite

Multi-functional Multi-band Metasurface for Linear and Circular Polarization in Reflection Mode

Year 2024, Volume: 14 Issue: 1, 26 - 30, 29.02.2024
https://doi.org/10.35354/tbed.1414946

Abstract

A new metasurface design is presented in multi and broad frequency bands. Metasurface has been designed on Roger 5880 substrate with a thickness of 1.575 mm. The top of the designed metasurface consists of two diagonal mirror m-shaped unit cells. The background plane covers the whole metasurface. Numerical results demonstrate the metasurface's capability for both linear (12.48-13.62 GHz, 19.00-27.64 GHz, 39.45-41.72 GHz, 44.68-45.18 GHz, and 47.52-48.28 GHz) and circular (11.5-12.07 GHz, 30.01-37.77 GHz, 42.3-44.2 GHz, 45.45-47.1 GHz, 48.7-49.54 GHz) polarization conversion with over 90% efficiency. At the same time, the metasurface has good angular stability up 45^0.

References

  • [1] Ahmed, A., Cao, Q., Khan, M. I., Ahmed, F., & Tahir, F. A. (2023). A multifunctional broadband polarization rotator based on reflective anisotropic metasurface. Physics Letters A, 470, 128785.
  • [2] Ako, R. T., Lee, W. S., Atakaramians, S., Bhaskaran, M., Sriram, S., & Withayachumnankul, W. (2020). Ultra-wideband tri-layer transmissive linear polarization converter for terahertz waves. APL Photonics, 5(4).
  • [3] Chen, B., Wang, X., Li, W., Li, C., Wang, Z., Guo, H., Wu, J., Fan, K., Zhang, C., & He, Y. (2022). Electrically addressable integrated intelligent terahertz metasurface. Science Advances, 8(41), eadd1296.
  • [4] Chen, C.-Y., Tsai, T.-R., Pan, C.-L., & Pan, R.-P. (2003). Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals. Applied Physics Letters, 83(22), 4497-4499.
  • [5] Chen, H.-Y., Wang, J.-F., Ma, H., Qu, S.-B., Zhang, J.-Q., Xu, Z., & Zhang, A.-X. (2015). Broadband perfect polarization conversion metasurfaces. Chinese Physics B, 24(1), 014201.
  • [6] Cheng, Y. Z., Withayachumnankul, W., Upadhyay, A., Headland, D., Nie, Y., Gong, R. Z., Bhaskaran, M., Sriram, S., & Abbott, D. (2014). Ultrabroadband reflective polarization convertor for terahertz waves. Applied Physics Letters, 105(18).
  • [7] Cildir, A., Tahir, F. A., Imran, M., & Abbasi, Q. (2023). An Innovative Metasurface Polarizer Working in 5G Frequency Bands.
  • [8] Dutta, R., Ghosh, J., Yang, Z., & Zhang, X. (2021). Multi-band multi-functional metasurface-based reflective polarization converter for linear and circular polarizations. IEEE Access, 9, 152738-152748.
  • [9] Fahad, A. K., Ruan, C., Nazir, R., Saleem, M., Haq, T. U., Ullah, S., & He, W. (2020). Ultra-thin metasheet for dual-wide-band linear to circular polarization conversion with wide-angle performance. IEEE Access, 8, 163244-163254.
  • [10] Guo, Y., Xu, J., Lan, C., & Bi, K. (2021). Broadband and high-efficiency linear polarization converter based on reflective metasurface. Engineered Science, 14(2), 39-45.
  • [11] Khan, M. I., Khalid, Z., & Tahir, F. A. (2019). Linear and circular-polarization conversion in X-band using anisotropic metasurface. Scientific reports, 9(1), 4552.
  • [12] Khan, M. I., & Tahir, F. A. (2017a). An angularly stable dual-broadband anisotropic cross polarization conversion metasurface. Journal of Applied Physics, 122(5).
  • [13] Khan, M. I., & Tahir, F. A. (2017b). Simultaneous quarter-wave plate and half-mirror operation through a highly flexible single layer anisotropic metasurface. Scientific reports, 7(1), 16059.
  • [14] Li, S., & Zhang, X. (2020). Asymmetric tri‐band linear‐to‐circular polarization converter in transmission mode. International Journal of RF and Microwave Computer‐Aided Engineering, 30(2), e21959.
  • [15] Li, Z., Yang, R., Wang, J., Zhao, Y., Tian, J., & Zhang, W. (2021). Multifunctional metasurface for broadband absorption, linear and circular polarization conversions. Optical Materials Express, 11(10), 3507-3519.
  • [16] Lin, B., Wang, B., Meng, W., Da, X., Li, W., Fang, Y., & Zhu, Z. (2016). Dual-band high-efficiency polarization converter using an anisotropic metasurface. Journal of Applied Physics, 119(18).
  • [17] Masson, J.-B., & Gallot, G. (2006). Terahertz achromatic quarter-wave plate. Optics letters, 31(2), 265-267.
  • [18] Moghadam, M. S. J., Akbari, M., Samadi, F., & Sebak, A.-R. (2018). Wideband cross polarization rotation based on reflective anisotropic surfaces. IEEE Access, 6, 15919-15925.
  • [19] Nguyen, T. K. T., Nguyen, T. M., Nguyen, H. Q., Cao, T. N., Le, D. T., Bui, X. K., Bui, S. T., Truong, C. L., Vu, D. L., & Nguyen, T. Q. H. (2021). Simple design of efficient broadband multifunctional polarization converter for X-band applications. Scientific reports, 11(1), 2032.
  • [20] Nguyen, T. Q. H., Nguyen, T. K. T., Nguyen, T. Q. M., Cao, T. N., Phan, H. L., Luong, N. M., Le, D. T., Bui, X. K., Truong, C. L., & Vu, D. L. (2021). Simple design of a wideband and wide-angle reflective linear polarization converter based on crescent-shaped metamaterial for Ku-band applications. Optics Communications, 486, 126773.
  • [21] Pozar, D. M. (2000). Microwave and RF design of wireless systems. John Wiley & Sons.
  • [22] Roy, K., Sinha, R., & Barde, C. (2022). Linear-to-linear polarization conversion using metasurface for X, Ku and K band applications. Frequenz, 76(7-8), 461-470.
  • [23] Shukoor, M. A., Dey, S., & Koul, S. K. (2022). Broadband chiral-type linear to linear reflecting polarizer with minimal bandwidth reduction at higher oblique angles for satellite applications. IEEE Transactions on Antennas and Propagation, 70(7), 5614-5622.
  • [24] Tutar, F., & Ozturk, G. (2022). An effective metasurface-based linear and circular polarization converter for C-and X-band applications. Optical Materials, 128, 112355.
  • [25] Wahidi, M. S., Khan, M. I., Tahir, F. A., & Rmili, H. (2020). Multifunctional single layer metasurface based on hexagonal split ring resonator. IEEE Access, 8, 28054-28063.
  • [26] Xu, J., Li, R., Wang, S., & Han, T. (2018). Ultra-broadband linear polarization converter based on anisotropic metasurface. Optics Express, 26(20), 26235-26241.
  • [27] Yang, X., Ding, Z., & Zhang, Z. (2021). Broadband linear polarization conversion across complete Ku band based on ultrathin metasurface. AEU-International Journal of Electronics and Communications, 138, 153884.
  • [28] Zang, X., Yao, B., Chen, L., Xie, J., Guo, X., Balakin, A. V., Shkurinov, A. P., & Zhuang, S. (2021). Metasurfaces for manipulating terahertz waves. Light: Advanced Manufacturing, 2(2), 148-172.
  • [29] Zhang, L., Zhou, P., Chen, H., Lu, H., Xie, J., & Deng, L. (2015). Adjustable wideband reflective converter based on cut-wire metasurface. Journal of Optics, 17(10), 105105.
  • [30] Zheng, C., Li, J., Liu, L., Li, J., Yue, Z., Hao, X., Zhang, Y., Zang, H., & Yao, J. (2022). Optically tunable terahertz metasurface absorber. Annalen der Physik, 534(5), 2200007.

Yansıma Modunda Doğrusal ve Dairesel Polarizasyon için Çok Fonksiyonlu Çok Bantlı Metasurface

Year 2024, Volume: 14 Issue: 1, 26 - 30, 29.02.2024
https://doi.org/10.35354/tbed.1414946

Abstract

Çoklu ve geniş frekans bantlarında yeni bir metasurface tasarımı sunulmaktadır. Metasurface, 1.575 mm kalınlığında Roger 5880 alttas malzeme üzerine tasarlanmıştır. Tasarlanan metayüzeyin üst kısmı iki adet capraz ayna goruntulu m-şekilli birim hücreden oluşmaktadır. Arka plan düzlemi metayüzeyin tamamını kaplar. Sayısal sonuçlar, metasurface'in hem doğrusal (12,48-13,62 GHz, 19,00-27,64 GHz, 39,45-41,72 GHz, 44,68-45,18 GHz ve 47,52-48,28 GHz) hem de dairesel (11,5-12,07 GHz, 30,01-37,77 GHz, 42,3) kapasitesini göstermektedir. -44,2 GHz, 45,45-47,1 GHz, 48,7-49,54 GHz) %90'ın üzerinde verimlilikle polarizasyon dönüşümü. Aynı zamanda metayüzey 45^0'a kadar iyi bir açısal stabiliteye sahiptir.

References

  • [1] Ahmed, A., Cao, Q., Khan, M. I., Ahmed, F., & Tahir, F. A. (2023). A multifunctional broadband polarization rotator based on reflective anisotropic metasurface. Physics Letters A, 470, 128785.
  • [2] Ako, R. T., Lee, W. S., Atakaramians, S., Bhaskaran, M., Sriram, S., & Withayachumnankul, W. (2020). Ultra-wideband tri-layer transmissive linear polarization converter for terahertz waves. APL Photonics, 5(4).
  • [3] Chen, B., Wang, X., Li, W., Li, C., Wang, Z., Guo, H., Wu, J., Fan, K., Zhang, C., & He, Y. (2022). Electrically addressable integrated intelligent terahertz metasurface. Science Advances, 8(41), eadd1296.
  • [4] Chen, C.-Y., Tsai, T.-R., Pan, C.-L., & Pan, R.-P. (2003). Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals. Applied Physics Letters, 83(22), 4497-4499.
  • [5] Chen, H.-Y., Wang, J.-F., Ma, H., Qu, S.-B., Zhang, J.-Q., Xu, Z., & Zhang, A.-X. (2015). Broadband perfect polarization conversion metasurfaces. Chinese Physics B, 24(1), 014201.
  • [6] Cheng, Y. Z., Withayachumnankul, W., Upadhyay, A., Headland, D., Nie, Y., Gong, R. Z., Bhaskaran, M., Sriram, S., & Abbott, D. (2014). Ultrabroadband reflective polarization convertor for terahertz waves. Applied Physics Letters, 105(18).
  • [7] Cildir, A., Tahir, F. A., Imran, M., & Abbasi, Q. (2023). An Innovative Metasurface Polarizer Working in 5G Frequency Bands.
  • [8] Dutta, R., Ghosh, J., Yang, Z., & Zhang, X. (2021). Multi-band multi-functional metasurface-based reflective polarization converter for linear and circular polarizations. IEEE Access, 9, 152738-152748.
  • [9] Fahad, A. K., Ruan, C., Nazir, R., Saleem, M., Haq, T. U., Ullah, S., & He, W. (2020). Ultra-thin metasheet for dual-wide-band linear to circular polarization conversion with wide-angle performance. IEEE Access, 8, 163244-163254.
  • [10] Guo, Y., Xu, J., Lan, C., & Bi, K. (2021). Broadband and high-efficiency linear polarization converter based on reflective metasurface. Engineered Science, 14(2), 39-45.
  • [11] Khan, M. I., Khalid, Z., & Tahir, F. A. (2019). Linear and circular-polarization conversion in X-band using anisotropic metasurface. Scientific reports, 9(1), 4552.
  • [12] Khan, M. I., & Tahir, F. A. (2017a). An angularly stable dual-broadband anisotropic cross polarization conversion metasurface. Journal of Applied Physics, 122(5).
  • [13] Khan, M. I., & Tahir, F. A. (2017b). Simultaneous quarter-wave plate and half-mirror operation through a highly flexible single layer anisotropic metasurface. Scientific reports, 7(1), 16059.
  • [14] Li, S., & Zhang, X. (2020). Asymmetric tri‐band linear‐to‐circular polarization converter in transmission mode. International Journal of RF and Microwave Computer‐Aided Engineering, 30(2), e21959.
  • [15] Li, Z., Yang, R., Wang, J., Zhao, Y., Tian, J., & Zhang, W. (2021). Multifunctional metasurface for broadband absorption, linear and circular polarization conversions. Optical Materials Express, 11(10), 3507-3519.
  • [16] Lin, B., Wang, B., Meng, W., Da, X., Li, W., Fang, Y., & Zhu, Z. (2016). Dual-band high-efficiency polarization converter using an anisotropic metasurface. Journal of Applied Physics, 119(18).
  • [17] Masson, J.-B., & Gallot, G. (2006). Terahertz achromatic quarter-wave plate. Optics letters, 31(2), 265-267.
  • [18] Moghadam, M. S. J., Akbari, M., Samadi, F., & Sebak, A.-R. (2018). Wideband cross polarization rotation based on reflective anisotropic surfaces. IEEE Access, 6, 15919-15925.
  • [19] Nguyen, T. K. T., Nguyen, T. M., Nguyen, H. Q., Cao, T. N., Le, D. T., Bui, X. K., Bui, S. T., Truong, C. L., Vu, D. L., & Nguyen, T. Q. H. (2021). Simple design of efficient broadband multifunctional polarization converter for X-band applications. Scientific reports, 11(1), 2032.
  • [20] Nguyen, T. Q. H., Nguyen, T. K. T., Nguyen, T. Q. M., Cao, T. N., Phan, H. L., Luong, N. M., Le, D. T., Bui, X. K., Truong, C. L., & Vu, D. L. (2021). Simple design of a wideband and wide-angle reflective linear polarization converter based on crescent-shaped metamaterial for Ku-band applications. Optics Communications, 486, 126773.
  • [21] Pozar, D. M. (2000). Microwave and RF design of wireless systems. John Wiley & Sons.
  • [22] Roy, K., Sinha, R., & Barde, C. (2022). Linear-to-linear polarization conversion using metasurface for X, Ku and K band applications. Frequenz, 76(7-8), 461-470.
  • [23] Shukoor, M. A., Dey, S., & Koul, S. K. (2022). Broadband chiral-type linear to linear reflecting polarizer with minimal bandwidth reduction at higher oblique angles for satellite applications. IEEE Transactions on Antennas and Propagation, 70(7), 5614-5622.
  • [24] Tutar, F., & Ozturk, G. (2022). An effective metasurface-based linear and circular polarization converter for C-and X-band applications. Optical Materials, 128, 112355.
  • [25] Wahidi, M. S., Khan, M. I., Tahir, F. A., & Rmili, H. (2020). Multifunctional single layer metasurface based on hexagonal split ring resonator. IEEE Access, 8, 28054-28063.
  • [26] Xu, J., Li, R., Wang, S., & Han, T. (2018). Ultra-broadband linear polarization converter based on anisotropic metasurface. Optics Express, 26(20), 26235-26241.
  • [27] Yang, X., Ding, Z., & Zhang, Z. (2021). Broadband linear polarization conversion across complete Ku band based on ultrathin metasurface. AEU-International Journal of Electronics and Communications, 138, 153884.
  • [28] Zang, X., Yao, B., Chen, L., Xie, J., Guo, X., Balakin, A. V., Shkurinov, A. P., & Zhuang, S. (2021). Metasurfaces for manipulating terahertz waves. Light: Advanced Manufacturing, 2(2), 148-172.
  • [29] Zhang, L., Zhou, P., Chen, H., Lu, H., Xie, J., & Deng, L. (2015). Adjustable wideband reflective converter based on cut-wire metasurface. Journal of Optics, 17(10), 105105.
  • [30] Zheng, C., Li, J., Liu, L., Li, J., Yue, Z., Hao, X., Zhang, Y., Zang, H., & Yao, J. (2022). Optically tunable terahertz metasurface absorber. Annalen der Physik, 534(5), 2200007.
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering Electromagnetics
Journal Section Makaleler
Authors

Abdülkadir Çıldır 0000-0003-1789-6088

Publication Date February 29, 2024
Submission Date January 4, 2024
Acceptance Date January 30, 2024
Published in Issue Year 2024 Volume: 14 Issue: 1

Cite

APA Çıldır, A. (2024). Multi-functional Multi-band Metasurface for Linear and Circular Polarization in Reflection Mode. Teknik Bilimler Dergisi, 14(1), 26-30. https://doi.org/10.35354/tbed.1414946