Research Article
BibTex RIS Cite

Makrosefalisi Olan Hastalarda Nörogörüntülemenin Tanısal Değeri

Year 2020, Volume: 14 Issue: 1, 85 - 88, 27.01.2020
https://doi.org/10.12956/tchd.648221

Abstract



Amaç: Bu çalışmada makrosefali için yapılan görüntülemelerde benign
eksternal hidrosefali (BEH), hidrosefali ve diğer ilişkili durumların göreceli
sıklıklarını belirlemek ve nörogörüntüleme değerlendirmesinden fayda sağlayacak
olan makrosefali hastaları için ek risk faktörlerini tespit etmek
amaçlanmıştır.



Materyal
ve Metot:
Merkezimizdeki 1 Ocak
2014 ile 1 Haziran 2019 tarihleri arasındaki tıbbi kayıtlar geriye dönük olarak
makrosefali tanı kodu ile tarandı. 36 aylıktan büyük hastalar çıkarılarak
yapılan taramada her hasta için yaş, cinsiyet, semptomlar ve klinik bulgular
(nöbetler, hipotoni gibi muayenede nörolojik anormallikler), nörogörüntüleme
bulguları, gelişimsel gecikme, ailede makrosefali öyküsü ve baş çevresi
bilgileri elde edildi.



Bulgular: Toplamda 103 hasta taramaya dahil oldu. Ortalama görüntüleme
yaşı 9 ay idi. (±5,5 ay). Yirmi bir hasta kız (%20,38), seksen iki hasta ise
erkek idi (%79,61). Yapılan nörogörüntelemelerden yirmi bir tanesi manyetik
rezonans görüntülemesi, yirmi altısı bilgisayarlı tomografi ve altmış beş
tanesi transfontanel ultrasonografi idi. Anormal nörogörüntüleme bulguları
gelişimsel geriliği veya anormal nörolojik bulgusu olanlarda diğer gruplara (BEH
ve normal görüntüleme) göre anlamlı olarak daha yüksek saptandı. (p=0.003 ve
p<0.0001).



Sonuç: Bu çalışmayla makrosefalisi olan hastalarda gelişme geriliği
veya anormal nörolojik muayene bulgusu saptanmamışsa yapılan
nörogörüntülemelerin tanısal katkısı olmadığı ortaya konulmuştur.




Supporting Institution

yok

References

  • 1. Nellhaus G. Head circumference from birth to eighteen years. Practical composite international and interracial graphs. Pediatrics. 1968;41(1):106-14.2. Sampson MA, Berg AD, Huber JN, Olgun G. Necessity of Intracranial Imaging in Infants and Children With Macrocephaly. Pediatr Neurol. 2019;93:21-6.3. Zahl SM, Egge A, Helseth E, Wester K. Clinical, Radiological, and Demographic Details of Benign External Hydrocephalus: A Population-Based Study. Pediatr Neurol. 2019;96:53-7.4. Haws ME, Linscott L, Thomas C, Orscheln E, Radhakrishnan R, Kline-Fath B. A Retrospective Analysis of the Utility of Head Computed Tomography and/or Magnetic Resonance Imaging in the Management of Benign Macrocrania. J Pediatr. 2017;182:283-9 e1.5. van Wezel-Meijler G, Steggerda SJ, Leijser LM. Cranial ultrasonography in neonates: role and limitations. Semin Perinatol. 2010;34(1):28-38.6. Hamza M, Bodensteiner JB, Noorani PA, Barnes PD. Benign extracerebral fluid collections: a cause of macrocrania in infancy. Pediatr Neurol. 1987;3(4):218-21.7. Medina LS, Frawley K, Zurakowski D, Buttros D, DeGrauw AJ, Crone KR. Children with macrocrania: clinical and imaging predictors of disorders requiring surgery. AJNR Am J Neuroradiol. 2001;22(3):564-70.8. Muenchberger H, Assaad N, Joy P, Brunsdon R, Shores EA. Idiopathic macrocephaly in the infant: long-term neurological and neuropsychological outcome. Childs Nerv Syst. 2006;22(10):1242-8.9. Bosnjak V, Besenski N, Marusic-Della Marina B, Kogler A. Cranial ultrasonography in the evaluation of macrocrania in infancy. Dev Med Child Neurol. 1989;31(1):66-75.10. Laubscher B, Deonna T, Uske A, van Melle G. Primitive megalencephaly in children: natural history, medium term prognosis with special reference to external hydrocephalus. Eur J Pediatr. 1990;149(7):502-7.11. Prassopoulos P, Cavouras D, Golfinopoulos S, Nezi M. The size of the intra- and extraventricular cerebrospinal fluid compartments in children with idiopathic benign widening of the frontal subarachnoid space. Neuroradiology. 1995;37(5):418-21.12. Yew AY, Maher CO, Muraszko KM, Garton HJ. Long-term health status in benign external hydrocephalus. Pediatr Neurosurg. 2011;47(1):1-6.13. Sun M, Yuan W, Hertzler DA, Cancelliere A, Altaye M, Mangano FT. Diffusion tensor imaging findings in young children with benign external hydrocephalus differ from the normal population. Childs Nerv Syst. 2012;28(2):199-208.14. Nickel RE, Gallenstein JS. Developmental prognosis for infants with benign enlargement of the subarachnoid spaces. Dev Med Child Neurol. 1987;29(2):181-6.15. Tucker J, Choudhary AK, Piatt J. Macrocephaly in infancy: benign enlargement of the subarachnoid spaces and subdural collections. J Neurosurg Pediatr. 2016;18(1):16-20.

Neuroimaging indications for children with macrocephaly

Year 2020, Volume: 14 Issue: 1, 85 - 88, 27.01.2020
https://doi.org/10.12956/tchd.648221

Abstract



Objectives



The goal of this study was to determine the
relative frequencies of benign external hydrocephalus (BEH), hydrocephalus and
other conditions in a large series of imaging studies performed for
macrocephaly and identify additional risk factors for patients with
macrocephaly that would most likely benefit from neuroimaging evaluation.



Methods



Medical records at our center were searched for
the term macrocephaly retrospectively. The search extended from 1th January
2014 to 1th June 2019. Studies in patients older than 36 months of age were
excluded. Information about age, gender, symptoms and clinical signs (seizures,
neurologic abnormalities on exam such as hypotonia), neuroimaging findings, developmental
delay, family history of macrocephaly and head circumference (HC) were
collected for each patient.



Results



A total of 103 patients were included in the
analysis. The mean age at the time of imaging was 9 months (
±5.5 months).
Twenty-one (20.3%) of the subjects were female and 82 (79.6%) were male.
Twenty-nine of the imaging studies were magnetic resonance imaging, 26 were
computed tomography and 65 were head ultrasounds.
Patients with abnormal
neuroimaging results had significantly higher rates of developmental delay or
abnormal neurologic exam than patients with normal neuroimaging results or BEH
(p=0.003 and p<0.0001). There
was no significant difference between the neuroimaging results of patients with
and without positive family history of macrocephaly.



Conclusion



This study suggests that neuroimaging for
macrocephaly has almost negligible diagnostic yield unless having developmental
delay or abnormal neurological examination
.




References

  • 1. Nellhaus G. Head circumference from birth to eighteen years. Practical composite international and interracial graphs. Pediatrics. 1968;41(1):106-14.2. Sampson MA, Berg AD, Huber JN, Olgun G. Necessity of Intracranial Imaging in Infants and Children With Macrocephaly. Pediatr Neurol. 2019;93:21-6.3. Zahl SM, Egge A, Helseth E, Wester K. Clinical, Radiological, and Demographic Details of Benign External Hydrocephalus: A Population-Based Study. Pediatr Neurol. 2019;96:53-7.4. Haws ME, Linscott L, Thomas C, Orscheln E, Radhakrishnan R, Kline-Fath B. A Retrospective Analysis of the Utility of Head Computed Tomography and/or Magnetic Resonance Imaging in the Management of Benign Macrocrania. J Pediatr. 2017;182:283-9 e1.5. van Wezel-Meijler G, Steggerda SJ, Leijser LM. Cranial ultrasonography in neonates: role and limitations. Semin Perinatol. 2010;34(1):28-38.6. Hamza M, Bodensteiner JB, Noorani PA, Barnes PD. Benign extracerebral fluid collections: a cause of macrocrania in infancy. Pediatr Neurol. 1987;3(4):218-21.7. Medina LS, Frawley K, Zurakowski D, Buttros D, DeGrauw AJ, Crone KR. Children with macrocrania: clinical and imaging predictors of disorders requiring surgery. AJNR Am J Neuroradiol. 2001;22(3):564-70.8. Muenchberger H, Assaad N, Joy P, Brunsdon R, Shores EA. Idiopathic macrocephaly in the infant: long-term neurological and neuropsychological outcome. Childs Nerv Syst. 2006;22(10):1242-8.9. Bosnjak V, Besenski N, Marusic-Della Marina B, Kogler A. Cranial ultrasonography in the evaluation of macrocrania in infancy. Dev Med Child Neurol. 1989;31(1):66-75.10. Laubscher B, Deonna T, Uske A, van Melle G. Primitive megalencephaly in children: natural history, medium term prognosis with special reference to external hydrocephalus. Eur J Pediatr. 1990;149(7):502-7.11. Prassopoulos P, Cavouras D, Golfinopoulos S, Nezi M. The size of the intra- and extraventricular cerebrospinal fluid compartments in children with idiopathic benign widening of the frontal subarachnoid space. Neuroradiology. 1995;37(5):418-21.12. Yew AY, Maher CO, Muraszko KM, Garton HJ. Long-term health status in benign external hydrocephalus. Pediatr Neurosurg. 2011;47(1):1-6.13. Sun M, Yuan W, Hertzler DA, Cancelliere A, Altaye M, Mangano FT. Diffusion tensor imaging findings in young children with benign external hydrocephalus differ from the normal population. Childs Nerv Syst. 2012;28(2):199-208.14. Nickel RE, Gallenstein JS. Developmental prognosis for infants with benign enlargement of the subarachnoid spaces. Dev Med Child Neurol. 1987;29(2):181-6.15. Tucker J, Choudhary AK, Piatt J. Macrocephaly in infancy: benign enlargement of the subarachnoid spaces and subdural collections. J Neurosurg Pediatr. 2016;18(1):16-20.
There are 1 citations in total.

Details

Primary Language English
Subjects ​Internal Diseases
Journal Section ORIGINAL ARTICLES
Authors

Zeynep Öztürk 0000-0003-0500-0619

Merve Zorba Serin This is me 0000-0002-7701-4019

Publication Date January 27, 2020
Submission Date November 18, 2019
Published in Issue Year 2020 Volume: 14 Issue: 1

Cite

Vancouver Öztürk Z, Zorba Serin M. Neuroimaging indications for children with macrocephaly. Türkiye Çocuk Hast Derg. 2020;14(1):85-8.


The publication language of Turkish Journal of Pediatric Disease is English.


Manuscripts submitted to the Turkish Journal of Pediatric Disease will go through a double-blind peer-review process. Each submission will be reviewed by at least two external, independent peer reviewers who are experts in the field, in order to ensure an unbiased evaluation process. The editorial board will invite an external and independent editor to manage the evaluation processes of manuscripts submitted by editors or by the editorial board members of the journal. The Editor in Chief is the final authority in the decision-making process for all submissions. Articles accepted for publication in the Turkish Journal of Pediatrics are put in the order of publication, with at least 10 original articles in each issue, taking into account the acceptance dates. If the articles sent to the reviewers for evaluation are assessed as a senior for publication by the reviewers, the section editor and the editor considering all aspects (originality, high scientific quality and citation potential), it receives publication priority in addition to the articles assigned for the next issue.


The aim of the Turkish Journal of Pediatrics is to publish high-quality original research articles that will contribute to the international literature in the field of general pediatric health and diseases and its sub-branches. It also publishes editorial opinions, letters to the editor, reviews, case reports, book reviews, comments on previously published articles, meeting and conference proceedings, announcements, and biography. In addition to the field of child health and diseases, the journal also includes articles prepared in fields such as surgery, dentistry, public health, nutrition and dietetics, social services, human genetics, basic sciences, psychology, psychiatry, educational sciences, sociology and nursing, provided that they are related to this field. can be published.