Research Article
BibTex RIS Cite

Diyabetik Ketoasidoz Hastalarında Sıvı ve Elektrolit Tedavisinin Elektrolit Düzeyleri ve Asidoz Düzelme Süresine Etkisi

Year 2024, Volume: 18 Issue: 4, 224 - 234, 22.07.2024
https://doi.org/10.12956/tchd.1397313

Abstract

Amaç: Sıvı replasmanı ve insülin infüzyonu Diyabetik Ketoasidoz DKA tedavisinin temel taşlarıdır, ancak sıvı replasmanının optimal hacmi, infüzyon hızı ve elektrolit içeriği hala tartışmalı olan bir konudur. Bu çalışmanın amacı, diyabetik ketoasidozlu çocuklarda tedavinin pH, bikarbonat (HCO3), anyon açığı, klorür ve potasyum düzeyleri üzerindeki etkilerinin yanı sıra asidozun düzelme süresini araştırmaktı.

Gereç ve Yöntemler: Ocak 2015-Aralık 2017 tarihleri arasında diyabetik ketoasidoz tanısı ile takip edilen 93 hasta (toplam 96 DKA atağı) retrospektif olarak değerlendirildi.

Bulgular: Asidozun ortalama düzelme süresi 13.4±7.1 saatti. Anyon açığı 68 (%70.8) atakta tedavinin 4. saatinde ortalama 11±4.2 mmol/L ile normale döndü. Potasyum fosfat (KPO4) replasmanı yapılan hastalarda pH artışı daha hızlı ve asidoz düzelme süresi daha kısa olarak saptandı (p<0.001). Başvuruda daha düşük pH, daha düşük serum bikarbonat (HCO3) ve daha yüksek beyaz küre sayısı olan ataklarda tedavinin 16. saatinde asidozun devam ettiği görüldü (sırasıyla p<0.001, p=0.003 p=0.033). Hiperkloremi (Cl/Na oranı > 0.79) tedavinin 8. saatinde atakların %97’sinde tespit edildi.

Sonuç: Asidozu yansıtmada anyon açığının değeri tartışmalı olarak bulunsa da, DKA ataklarının ağır derecede olması ve hastaneye yatışta beyaz kürenin yüksek olması; tedavi sırasında verilen yüksek miktarda klorür ve KCl içeren sıvı ile potasyum replasmanı asidozun daha uzun sürede düzelmesi ile ilişkilendirilmiştir.

References

  • Sezer A, Paketçi A, Gören Y, Çatlı G, Ahmet A, Tuhan H, et al. Evaluation of Demographic, Clinical and Laboratory Features of Cases with Type 1 Diabetes Mellitus at Diagnosis. Turkish J Pediatr Dis 2018;12:173-9.
  • Wolfsdorf JI, Glaser N, Agus M, Fritsch M, Hanas R, Rewers A, et al. ISPAD Clinical Practice Consensus Guidelines 2018: Diabetic ketoacidosis and the hyperglycemic hyperosmolar state. Pediatr Diabetes 2018;19:155-77.
  • Rewers A, Kuppermann N, Stoner MJ, Garro A, Bennett JE, Quayle KS, et al. Effects of fluid rehydration strategy on correction of acidosis and electrolyte abnormalities in children with diabetic ketoacidosis. Diabetes Care 2021;44:2061-8.
  • Kuppermann N, Ghetti S, Schunk JE, Stoner MJ, Rewers A, McManemy JK, et al. Clinical trial of fluid infusion rates for pediatric diabetic ketoacidosis. N Engl J Med 2018;378:2275-87.
  • Maurice L, Julliand S, Polak M, Bismuth E, Storey C, Renolleau S, et al. Management of severe inaugural diabetic ketoacidosis in paediatric intensive care: retrospective comparison of two protocols. Eur J Pediatr 2022;181:1497-506.
  • Adrogué HJ, Wilson H, Boyd III AE, Suki WN, Eknoyan G. Plasma acid-base patterns in diabetic ketoacidosis. N Engl J Med 1982;307:1603-10.
  • Basnet S, Venepalli PK, Andoh J, Verhulst S, Koirala J. Effect of normal saline and half normal saline on serum electrolytes during recovery phase of diabetic ketoacidosis. J Intensive Care Med 2014;29:38-42.
  • Taylor D, Durward A, Tibby SM, Thorburn K, Holton F, Johnstone IC, et al. The influence of hyperchloraemia on acid base interpretation in diabetic ketoacidosis. Intensive Care Med 2006;32:295-301.
  • Wolfsdorf JI, Allgrove J, Craig ME, Edge J, Glaser N, Jain V, et al. ISPAD Clinical Practice Consensus Guidelines 2014. Diabetic ketoacidosis and hyperglycemic hyperosmolar state. Pediatr Diabetes 2014;15:154-79.
  • Ferreira JP, Hamui M, Torrents M, Carrano R, Ferraro M, Toledo I. The Influence of Chloride for the Interpretation of Plasma Bicarbonate During the Treatment of Diabetic Ketoacidosis. Pediatr Emerg Care 2020;36:e143-e45.
  • Chinoy A, Wright N, Bone M, Padidela R. Severe hypokalaemia in diabetic ketoacidosis: a contributor to central pontine myelinolysis? Endocrinol Diabetes Metab Case Rep 2019;2019:19-0034.
  • Palmer BF, Clegg DJ. Electrolyte and acid–base disturbances in patients with diabetes mellitus. N Engl J Med 2015;373:548-59.
  • Kardalas E, Paschou SA, Anagnostis P, Muscogiuri G, Siasos G, Vryonidou A. Hypokalemia: a clinical update. Endocr Connect 2018;7:R135-R46.
  • von Oettingen JE, Rhodes ET, Wolfsdorf JI. Resolution of ketoacidosis in children with new onset diabetes: Evaluation of various definitions. Diabetes Res Clin Pract 2018;135:76-84.
  • Mrozik LT, Yung M. Hyperchloraemic metabolic acidosis slows recovery in children with diabetic ketoacidosis: a retrospective audit. Aust Crit Care 2009;22:172-7.
  • Chua H-R, Venkatesh B, Stachowski E, Schneider AG, Perkins K, Ladanyi S, et al. Plasma-Lyte 148 vs 0.9% saline for fluid resuscitation in diabetic ketoacidosis. J Crit Care 2012;27:138-45.
  • Ramanan M, Attokaran A, Murray L, Bhadange N, Stewart D, Rajendran G, et al. Sodium chloride or Plasmalyte-148 evaluation in severe diabetic ketoacidosis (SCOPE-DKA): a cluster, crossover, randomized, controlled trial. Intensive Care Med 2021;47:1248-57.
  • Peeters E, Van Ijperen W, Robertson L, Royle P, van IJperen Sr W. Analysis of the safety and efficacy of diabetic ketoacidosis management in a Community General Hospital, 2001–2010: a descriptive study. Scott Med J 2015;60:121-5.
  • Naeem MA, Al-Alem HA, Al-Dubayee MS, Al-Juraibah FN, Omair A, Al-Ruwaili AS, et al. Characteristics of pediatric diabetic ketoacidosis patients in Saudi Arabia. Saudi Med J 2015;36:20-5.
  • Edge J, Nunney I, Dhatariya K. Diabetic ketoacidosis in an adolescent and young adult population in the UK in 2014: a national survey comparison of management in paediatric and adult settings. Diabet Med 2016;33:1352-9.
  • Rameshkumar R, Satheesh P, Jain P, Anbazhagan J, Abraham S, Subramani S, et al. Low-dose (0.05 Unit/kg/hour) vs standard-dose (0.1 Unit/kg/hour) insulin in the management of pediatric diabetic ketoacidosis: a randomized double-blind controlled trial. Indian Pediatr 2021;58:617-23.
  • Sehgal M, Batra M, Jha P, Sanchez O. Risk Factors and Laboratory Findings Associated With Diabetic Ketoacidosis in Hospitalized Pediatric Patients. Cureus 2022;14:e25410.
  • Karavanaki K, Karanika E, Georga S, Bartzeliotou A, Tsouvalas M, Konstantopoulos I, et al. Cytokine response to diabetic ketoacidosis (DKA) in children with type 1 diabetes (T1DM). Endocr J 2011;58:1045-3.
  • Xu W, Wu H-f, Ma S-g, Bai F, Hu W, Jin Y, et al. Correlation between peripheral white blood cell counts and hyperglycemic emergencies. Int J Med Sci 2013;10:758-65.
  • Abdel-Moneim A, Zanaty MI, El-Sayed A, Khalil RG, Rahman HA. Relation between oxidative stress and hematologic abnormalities in children with type 1 diabetes. Can J Diabetes 2020;44:222-8.

Evaluation of the Effect of Fluid and Electrolyte Therapy on Electrolytes and Acidosis Resolution Time in Diabetic Ketoacidosis

Year 2024, Volume: 18 Issue: 4, 224 - 234, 22.07.2024
https://doi.org/10.12956/tchd.1397313

Abstract

Objective: Fluid replacement and insulin infusion are the cornerstones of treatment of diabetic ketoacidosis, but the optimal volume, rate of infusion, and electrolyte content of fluid replacement have been controversial. The aim of this study was to investigate the effects of treatment on pH, bicarbonate (HCO3), anion gap, chloride, and potassium levels as well as time to resolution of acidosis in children with diabetic ketoacidosis.

Material and Methods: Ninety-six episodes with diabetic ketoacidosis between January 2015-December 2017 were evaluated.

Results: The mean resolution time of acidosis was 13.4±7.1 hours. Anion gap was returned to normal in 68 (70.8%) episodes at the 4th hour of treatment with a mean of 11±4.2 mmol/L. Episodes with potassium phosphate (KPO4) replacement resulted in a faster increase in pH and a significantly shorter resolution time of acidosis (p<0.001). Acidosis persisted at the 16th hour of treatment in episodes with lower pH, lower serum bicarbonate (HCO3) and higher white blood cell (WBC) counts on admission (p<0.001, p=0.003 p=0.033, respectively). Hyperchloremia (Cl/Na ratio > 0.79) was observed in 97% of cases after 8 hours of treatment.

Conclusion: Although the value of the anion gap in predicting acidosis is controversial, severe DKA episodes and high white blood cell count at admission; potassium replacement with high amounts of chloride and KCl containing fluids given during treatment have been associated with a longer recovery time of acidosis.

References

  • Sezer A, Paketçi A, Gören Y, Çatlı G, Ahmet A, Tuhan H, et al. Evaluation of Demographic, Clinical and Laboratory Features of Cases with Type 1 Diabetes Mellitus at Diagnosis. Turkish J Pediatr Dis 2018;12:173-9.
  • Wolfsdorf JI, Glaser N, Agus M, Fritsch M, Hanas R, Rewers A, et al. ISPAD Clinical Practice Consensus Guidelines 2018: Diabetic ketoacidosis and the hyperglycemic hyperosmolar state. Pediatr Diabetes 2018;19:155-77.
  • Rewers A, Kuppermann N, Stoner MJ, Garro A, Bennett JE, Quayle KS, et al. Effects of fluid rehydration strategy on correction of acidosis and electrolyte abnormalities in children with diabetic ketoacidosis. Diabetes Care 2021;44:2061-8.
  • Kuppermann N, Ghetti S, Schunk JE, Stoner MJ, Rewers A, McManemy JK, et al. Clinical trial of fluid infusion rates for pediatric diabetic ketoacidosis. N Engl J Med 2018;378:2275-87.
  • Maurice L, Julliand S, Polak M, Bismuth E, Storey C, Renolleau S, et al. Management of severe inaugural diabetic ketoacidosis in paediatric intensive care: retrospective comparison of two protocols. Eur J Pediatr 2022;181:1497-506.
  • Adrogué HJ, Wilson H, Boyd III AE, Suki WN, Eknoyan G. Plasma acid-base patterns in diabetic ketoacidosis. N Engl J Med 1982;307:1603-10.
  • Basnet S, Venepalli PK, Andoh J, Verhulst S, Koirala J. Effect of normal saline and half normal saline on serum electrolytes during recovery phase of diabetic ketoacidosis. J Intensive Care Med 2014;29:38-42.
  • Taylor D, Durward A, Tibby SM, Thorburn K, Holton F, Johnstone IC, et al. The influence of hyperchloraemia on acid base interpretation in diabetic ketoacidosis. Intensive Care Med 2006;32:295-301.
  • Wolfsdorf JI, Allgrove J, Craig ME, Edge J, Glaser N, Jain V, et al. ISPAD Clinical Practice Consensus Guidelines 2014. Diabetic ketoacidosis and hyperglycemic hyperosmolar state. Pediatr Diabetes 2014;15:154-79.
  • Ferreira JP, Hamui M, Torrents M, Carrano R, Ferraro M, Toledo I. The Influence of Chloride for the Interpretation of Plasma Bicarbonate During the Treatment of Diabetic Ketoacidosis. Pediatr Emerg Care 2020;36:e143-e45.
  • Chinoy A, Wright N, Bone M, Padidela R. Severe hypokalaemia in diabetic ketoacidosis: a contributor to central pontine myelinolysis? Endocrinol Diabetes Metab Case Rep 2019;2019:19-0034.
  • Palmer BF, Clegg DJ. Electrolyte and acid–base disturbances in patients with diabetes mellitus. N Engl J Med 2015;373:548-59.
  • Kardalas E, Paschou SA, Anagnostis P, Muscogiuri G, Siasos G, Vryonidou A. Hypokalemia: a clinical update. Endocr Connect 2018;7:R135-R46.
  • von Oettingen JE, Rhodes ET, Wolfsdorf JI. Resolution of ketoacidosis in children with new onset diabetes: Evaluation of various definitions. Diabetes Res Clin Pract 2018;135:76-84.
  • Mrozik LT, Yung M. Hyperchloraemic metabolic acidosis slows recovery in children with diabetic ketoacidosis: a retrospective audit. Aust Crit Care 2009;22:172-7.
  • Chua H-R, Venkatesh B, Stachowski E, Schneider AG, Perkins K, Ladanyi S, et al. Plasma-Lyte 148 vs 0.9% saline for fluid resuscitation in diabetic ketoacidosis. J Crit Care 2012;27:138-45.
  • Ramanan M, Attokaran A, Murray L, Bhadange N, Stewart D, Rajendran G, et al. Sodium chloride or Plasmalyte-148 evaluation in severe diabetic ketoacidosis (SCOPE-DKA): a cluster, crossover, randomized, controlled trial. Intensive Care Med 2021;47:1248-57.
  • Peeters E, Van Ijperen W, Robertson L, Royle P, van IJperen Sr W. Analysis of the safety and efficacy of diabetic ketoacidosis management in a Community General Hospital, 2001–2010: a descriptive study. Scott Med J 2015;60:121-5.
  • Naeem MA, Al-Alem HA, Al-Dubayee MS, Al-Juraibah FN, Omair A, Al-Ruwaili AS, et al. Characteristics of pediatric diabetic ketoacidosis patients in Saudi Arabia. Saudi Med J 2015;36:20-5.
  • Edge J, Nunney I, Dhatariya K. Diabetic ketoacidosis in an adolescent and young adult population in the UK in 2014: a national survey comparison of management in paediatric and adult settings. Diabet Med 2016;33:1352-9.
  • Rameshkumar R, Satheesh P, Jain P, Anbazhagan J, Abraham S, Subramani S, et al. Low-dose (0.05 Unit/kg/hour) vs standard-dose (0.1 Unit/kg/hour) insulin in the management of pediatric diabetic ketoacidosis: a randomized double-blind controlled trial. Indian Pediatr 2021;58:617-23.
  • Sehgal M, Batra M, Jha P, Sanchez O. Risk Factors and Laboratory Findings Associated With Diabetic Ketoacidosis in Hospitalized Pediatric Patients. Cureus 2022;14:e25410.
  • Karavanaki K, Karanika E, Georga S, Bartzeliotou A, Tsouvalas M, Konstantopoulos I, et al. Cytokine response to diabetic ketoacidosis (DKA) in children with type 1 diabetes (T1DM). Endocr J 2011;58:1045-3.
  • Xu W, Wu H-f, Ma S-g, Bai F, Hu W, Jin Y, et al. Correlation between peripheral white blood cell counts and hyperglycemic emergencies. Int J Med Sci 2013;10:758-65.
  • Abdel-Moneim A, Zanaty MI, El-Sayed A, Khalil RG, Rahman HA. Relation between oxidative stress and hematologic abnormalities in children with type 1 diabetes. Can J Diabetes 2020;44:222-8.
There are 25 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other)
Journal Section ORIGINAL ARTICLES
Authors

Müge Sezer 0000-0002-9254-9935

Can Demir Karacan 0000-0001-5301-8106

Nilden Tuygun 0000-0002-5359-4215

Saliha Şenel 0000-0001-7203-5884

Early Pub Date May 10, 2024
Publication Date July 22, 2024
Submission Date January 17, 2024
Acceptance Date March 20, 2024
Published in Issue Year 2024 Volume: 18 Issue: 4

Cite

Vancouver Sezer M, Karacan CD, Tuygun N, Şenel S. Evaluation of the Effect of Fluid and Electrolyte Therapy on Electrolytes and Acidosis Resolution Time in Diabetic Ketoacidosis. Türkiye Çocuk Hast Derg. 2024;18(4):224-3.


The publication language of Turkish Journal of Pediatric Disease is English.


Manuscripts submitted to the Turkish Journal of Pediatric Disease will go through a double-blind peer-review process. Each submission will be reviewed by at least two external, independent peer reviewers who are experts in the field, in order to ensure an unbiased evaluation process. The editorial board will invite an external and independent editor to manage the evaluation processes of manuscripts submitted by editors or by the editorial board members of the journal. The Editor in Chief is the final authority in the decision-making process for all submissions. Articles accepted for publication in the Turkish Journal of Pediatrics are put in the order of publication, with at least 10 original articles in each issue, taking into account the acceptance dates. If the articles sent to the reviewers for evaluation are assessed as a senior for publication by the reviewers, the section editor and the editor considering all aspects (originality, high scientific quality and citation potential), it receives publication priority in addition to the articles assigned for the next issue.


The aim of the Turkish Journal of Pediatrics is to publish high-quality original research articles that will contribute to the international literature in the field of general pediatric health and diseases and its sub-branches. It also publishes editorial opinions, letters to the editor, reviews, case reports, book reviews, comments on previously published articles, meeting and conference proceedings, announcements, and biography. In addition to the field of child health and diseases, the journal also includes articles prepared in fields such as surgery, dentistry, public health, nutrition and dietetics, social services, human genetics, basic sciences, psychology, psychiatry, educational sciences, sociology and nursing, provided that they are related to this field. can be published.