Research Article
BibTex RIS Cite

Prototype Design of Solar Collector Hybrid Heating System and Testing of Triethylene Glycol Nanofluid

Year 2023, , 68 - 75, 27.03.2023
https://doi.org/10.46810/tdfd.1184478

Abstract

The inclusion of solar energy, which is a renewable energy source, in heating systems in buildings provides significant advantages. To make heating with solar energy sufficient and efficient, nanofluids are used in solar collectors. In this study, a hybrid heating prototype is produced, a control mechanism controlling the operation of the hybrid system is established and tests are carried out by including monoethylene glycol, propylene glycol, aluminum oxide, copper oxide, titanium dioxide, especially triethylene glycol-based nanofluids in the system. Finally, a new nanofluid is obtained by mixing triethylene glycol with aluminum oxide and is tested on the prototype. With the tests carried out under the same conditions, the temperature differences of the nanofluids in a certain time period are observed and recorded. It is observed that the mixture of water and triethylene glycol provided the lowest temperature increase by providing a temperature increase of 8.6 °C in the range of 0-90 minutes. It also is observed that the highest temperature increase is achieved with the 21 °C temperature increase of the pure water and aluminum oxide mixture. Although the water and triethylene glycol mixture performs more inefficiently than other mixtures, it is thought that it can be used for heat storage since it heats up for a long time and cools down for a long time.

Supporting Institution

TUBITAK

Project Number

1919B012006220

Thanks

The authors would like to thank Mr. Ercument BOSTANCI for contributing to the realization of this study and TUBITAK for its support within the scope of 2209-A University Students Research Projects Support Program (Project No: 1919B012006220).

References

  • Kilic FC. Solar energy, its recent status in turkey and production Technologies. Engineering and Machine. 2015;52(617):94-106.
  • General Directorate of Meteorology. Effects of Global Warming and Climate Change [Internet]. 2021 [cited 2021 Oct 15]. Available from: https://www.mgm.gov.tr/genel/meteorolojiyegir.aspx?s=19
  • Gencoglu MT. Importance of renewable energy resources for Turkey. Firat University Journal of Science and Engineering. 2002;14(2):57-64.
  • Saglam S. Türkiye’nin güneş enerjisi potansiyelinin ve kullanım alanlarının incelenmesi. [M.S. thesis]. Istanbul: Graduate School of Science and Engineering, Marmara University; 2000.
  • General Directorate of Renewable Energy. Solar Potential Atlas [Internet]. 2021 [cited 2021 Oct 17]. Available from: http://www.gepa.enerji.gov.tr/MyCalculator/
  • Seydiogullari HS. Renewable energy for sustainable development. Planning Journal. 2013;23(1):19-25.
  • Ertekin C, Evrendilek F, Kulcu R. Modeling spatio-temporal dynamics of optimum tilt angles for solar collectors in Turkey. Sensors. 2008;8(5): 2913-2931.
  • Gundogdu K, Kabadayi HS, Ozturk A. Photovoltaic solar panels for you follow a simple and economic system design. Düzce University Journal of Science & Technology. 2016;4(2):634-639.
  • Bohne D, Fischer S, Obermeier E. Thermal, conductivity, density, viscosity, and prandtl‐numbers of ethylene glycol‐water mixtures. Reports of the Bunsen Society for Physical Chemistry, 1984;88(8): 739-742.
  • Ogut E, Dilki S. Dalgalı trapez plakalı ısı eşanjörü içindeki nanoakışkanların akış ve ısı transfer karakteristiklerinin incelenmesi. Dicle University Engineering Faculty Journal of Engineering. 2018;10(3):933-943.
  • Akcay S, Akdag U. Parametric investigation of effect on heat transfer of pulsating flow of nanofluids in a tube using circular rings. Pamukkale University Journal of Engineering Sciences. 2018;24(4):597-604.
  • Dagdevir T, Ozceyhan V. Investigation of the effect of using water based hybrid nanofluid on thermal and hydraulic performance in a heat exchanger. Erciyes University Institute of Science Journal of Science. 2021;37(1):61-73.
  • Kiliç F, Menlik T, Sözen A. Effect of titanium dioxide/water nanofluid use on thermal performance of the flat plate solar collector. Sol. Energy, 2018;164:101-108.
  • Verma SK, Tiwari AK, Tiwari S, Chauhan DS. Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid. Sol. Energy, 2018;167: 231-241.
  • Tong Y, Lee H, Kang W, Cho H. Energy and exergy comparison of a flat-plate solar collector using water, Al2O3 nanofluid, and CuO nanofluid. Appl. Therm. Eng. 2019;159: 113959.
  • Michael Joseph Stalin P, Arjunan TV, Matheswaran MM, Dolli H, Sadanandam N. Energy, economic and environmental investigation of a flat plate solar collector with CeO2/water nanofluid. J. Therm. Anal. Calorim. 2020;139(5):3219-3233.
  • Akram N, Montazer E, Kazi SN, Soudagar MEM, Ahmed W, Sarsam W. Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids. Energy. 2021;227:120452.
  • Khetib Y, Alzaed A, Tahmasebi A, Sharifpur M, Cheraghian G. Influence of using innovative turbulators on the exergy and energy efficacy of flat plate solar collector with DWCNTs-TiO2/water nanofluid. Sustainable Energy Technol. Assess. 2022;51:101855.
  • Yilanci A, Atalay O, Kocar G, Eryasar A. Determination of thermal performance of a solar collector by using dynamic test method. Pamukkale University Journal of Engineering Sciences. 2019;25(4):417-422.
  • Tezcan M. Flat plate solar collectors and efficiency calculation [M.S. thesis]. Istanbul: Graduate School of Science and Engineering, Istanbul Technical University; 2001.
  • Cengel YA, Boles MA. Introduction and Basic Concepts In: Thermodynamics: an Engineering Approach. McGraw-Hill Companies; 2011. p. 445-460.

Güneş Kollektörlü Hibrit Isıtma Sisteminin Prototip Tasarımı ve Trietilen Glikollü Isı Transfer Sıvısının Test Edilmesi

Year 2023, , 68 - 75, 27.03.2023
https://doi.org/10.46810/tdfd.1184478

Abstract

Yenilenebilir enerji kaynağı olan güneş enerjisinin, binalardaki ısıtma sistemlerine dâhil edilmesi önemli avantajlar sağlamaktadır. Güneş enerjisi ile ısıtmanın yeterli ve verimli hale gelebilmesi için güneş kollektörlerinin içerisinde ısı transfer sıvıları kullanılmaktadır. Bu çalışmada hibrit bir ısıtma prototipi üretilerek, hibrit sistemin çalışmasını denetleyen kontrol mekanizması oluşturulmuş ve trietilen glikol esaslı ısı transfer sıvısı başta olmak üzere mono etilen glikol, propilen glikol, alüminyum oksit, bakır oksit, titanyum dioksit sisteme dahil edilerek testler yapılmıştır. Son olarak trietilen glikol ile alüminyum oksit birbirine karıştırılarak yeni bir ısı transfer sıvısı elde edilmiş ve prototip üzerinde test edilmiştir. Aynı şartlar altında gerçekleştirilen testler ile ısı transfer sıvılarının belirli zaman diliminde sıcaklık farkları gözlemlenerek kaydedilmiştir. Su, trietilen glikol karışımı, 0-90 dakika aralığında 8,6 °C sıcaklık artışı sağlayarak en düşük sıcaklık artışı sağlayan karışım olduğu görülmüştür. Ayrıca en yüksek sıcaklık artışının saf su ve alüminyum oksit karışımının 21 °C sıcaklık artışı ile elde edildiği gözlemlenmiştir. Su ve trietilen glikol karışımı diğer karışımlara göre daha verimsiz bir performans sergilese de uzun sürede ısınıp uzun sürede soğuduğu için ısının depolanması amacıyla kullanılabileceği düşünülmektedir.

Project Number

1919B012006220

References

  • Kilic FC. Solar energy, its recent status in turkey and production Technologies. Engineering and Machine. 2015;52(617):94-106.
  • General Directorate of Meteorology. Effects of Global Warming and Climate Change [Internet]. 2021 [cited 2021 Oct 15]. Available from: https://www.mgm.gov.tr/genel/meteorolojiyegir.aspx?s=19
  • Gencoglu MT. Importance of renewable energy resources for Turkey. Firat University Journal of Science and Engineering. 2002;14(2):57-64.
  • Saglam S. Türkiye’nin güneş enerjisi potansiyelinin ve kullanım alanlarının incelenmesi. [M.S. thesis]. Istanbul: Graduate School of Science and Engineering, Marmara University; 2000.
  • General Directorate of Renewable Energy. Solar Potential Atlas [Internet]. 2021 [cited 2021 Oct 17]. Available from: http://www.gepa.enerji.gov.tr/MyCalculator/
  • Seydiogullari HS. Renewable energy for sustainable development. Planning Journal. 2013;23(1):19-25.
  • Ertekin C, Evrendilek F, Kulcu R. Modeling spatio-temporal dynamics of optimum tilt angles for solar collectors in Turkey. Sensors. 2008;8(5): 2913-2931.
  • Gundogdu K, Kabadayi HS, Ozturk A. Photovoltaic solar panels for you follow a simple and economic system design. Düzce University Journal of Science & Technology. 2016;4(2):634-639.
  • Bohne D, Fischer S, Obermeier E. Thermal, conductivity, density, viscosity, and prandtl‐numbers of ethylene glycol‐water mixtures. Reports of the Bunsen Society for Physical Chemistry, 1984;88(8): 739-742.
  • Ogut E, Dilki S. Dalgalı trapez plakalı ısı eşanjörü içindeki nanoakışkanların akış ve ısı transfer karakteristiklerinin incelenmesi. Dicle University Engineering Faculty Journal of Engineering. 2018;10(3):933-943.
  • Akcay S, Akdag U. Parametric investigation of effect on heat transfer of pulsating flow of nanofluids in a tube using circular rings. Pamukkale University Journal of Engineering Sciences. 2018;24(4):597-604.
  • Dagdevir T, Ozceyhan V. Investigation of the effect of using water based hybrid nanofluid on thermal and hydraulic performance in a heat exchanger. Erciyes University Institute of Science Journal of Science. 2021;37(1):61-73.
  • Kiliç F, Menlik T, Sözen A. Effect of titanium dioxide/water nanofluid use on thermal performance of the flat plate solar collector. Sol. Energy, 2018;164:101-108.
  • Verma SK, Tiwari AK, Tiwari S, Chauhan DS. Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid. Sol. Energy, 2018;167: 231-241.
  • Tong Y, Lee H, Kang W, Cho H. Energy and exergy comparison of a flat-plate solar collector using water, Al2O3 nanofluid, and CuO nanofluid. Appl. Therm. Eng. 2019;159: 113959.
  • Michael Joseph Stalin P, Arjunan TV, Matheswaran MM, Dolli H, Sadanandam N. Energy, economic and environmental investigation of a flat plate solar collector with CeO2/water nanofluid. J. Therm. Anal. Calorim. 2020;139(5):3219-3233.
  • Akram N, Montazer E, Kazi SN, Soudagar MEM, Ahmed W, Sarsam W. Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids. Energy. 2021;227:120452.
  • Khetib Y, Alzaed A, Tahmasebi A, Sharifpur M, Cheraghian G. Influence of using innovative turbulators on the exergy and energy efficacy of flat plate solar collector with DWCNTs-TiO2/water nanofluid. Sustainable Energy Technol. Assess. 2022;51:101855.
  • Yilanci A, Atalay O, Kocar G, Eryasar A. Determination of thermal performance of a solar collector by using dynamic test method. Pamukkale University Journal of Engineering Sciences. 2019;25(4):417-422.
  • Tezcan M. Flat plate solar collectors and efficiency calculation [M.S. thesis]. Istanbul: Graduate School of Science and Engineering, Istanbul Technical University; 2001.
  • Cengel YA, Boles MA. Introduction and Basic Concepts In: Thermodynamics: an Engineering Approach. McGraw-Hill Companies; 2011. p. 445-460.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Muhammed Babalıoğlu 0000-0002-3852-5932

Hakan Büyükpatpat 0000-0003-3277-8653

Abdullah Genç 0000-0002-7699-2822

Project Number 1919B012006220
Publication Date March 27, 2023
Published in Issue Year 2023

Cite

APA Babalıoğlu, M., Büyükpatpat, H., & Genç, A. (2023). Prototype Design of Solar Collector Hybrid Heating System and Testing of Triethylene Glycol Nanofluid. Türk Doğa Ve Fen Dergisi, 12(1), 68-75. https://doi.org/10.46810/tdfd.1184478
AMA Babalıoğlu M, Büyükpatpat H, Genç A. Prototype Design of Solar Collector Hybrid Heating System and Testing of Triethylene Glycol Nanofluid. TDFD. March 2023;12(1):68-75. doi:10.46810/tdfd.1184478
Chicago Babalıoğlu, Muhammed, Hakan Büyükpatpat, and Abdullah Genç. “Prototype Design of Solar Collector Hybrid Heating System and Testing of Triethylene Glycol Nanofluid”. Türk Doğa Ve Fen Dergisi 12, no. 1 (March 2023): 68-75. https://doi.org/10.46810/tdfd.1184478.
EndNote Babalıoğlu M, Büyükpatpat H, Genç A (March 1, 2023) Prototype Design of Solar Collector Hybrid Heating System and Testing of Triethylene Glycol Nanofluid. Türk Doğa ve Fen Dergisi 12 1 68–75.
IEEE M. Babalıoğlu, H. Büyükpatpat, and A. Genç, “Prototype Design of Solar Collector Hybrid Heating System and Testing of Triethylene Glycol Nanofluid”, TDFD, vol. 12, no. 1, pp. 68–75, 2023, doi: 10.46810/tdfd.1184478.
ISNAD Babalıoğlu, Muhammed et al. “Prototype Design of Solar Collector Hybrid Heating System and Testing of Triethylene Glycol Nanofluid”. Türk Doğa ve Fen Dergisi 12/1 (March 2023), 68-75. https://doi.org/10.46810/tdfd.1184478.
JAMA Babalıoğlu M, Büyükpatpat H, Genç A. Prototype Design of Solar Collector Hybrid Heating System and Testing of Triethylene Glycol Nanofluid. TDFD. 2023;12:68–75.
MLA Babalıoğlu, Muhammed et al. “Prototype Design of Solar Collector Hybrid Heating System and Testing of Triethylene Glycol Nanofluid”. Türk Doğa Ve Fen Dergisi, vol. 12, no. 1, 2023, pp. 68-75, doi:10.46810/tdfd.1184478.
Vancouver Babalıoğlu M, Büyükpatpat H, Genç A. Prototype Design of Solar Collector Hybrid Heating System and Testing of Triethylene Glycol Nanofluid. TDFD. 2023;12(1):68-75.