Research Article
BibTex RIS Cite

Generic Submersions in Contact Geometry

Year 2023, , 69 - 74, 28.12.2023
https://doi.org/10.46810/tdfd.1297083

Abstract

In the present paper, we introduce a new type of Riemannian submersion in the contact framework such that the fibers of such submersion are generic submanifolds, as given in [10]. This type of submersion is a generalization of many kinds of submersion introduced before in the literature. Once the Reeb vector field \xi is tangent to the fibers, its position is given such that it should lie in the anti-invariant distribution D^0, which is given in the definition of the generic submersion. Moreover, we give an example and some results for such submersions.

References

  • O'Neill B. The fundamental equations of a submersion. Michigan Mathematical Journal. 1966 Dec;13(4):459-69.
  • Gray A. Pseudo-Riemannian almost product manifolds and submersions. Journal of Mathematics and Mechanics. 1967 Jan 1;16(7):715-37.
  • Watson B. Almost hermitian submersions. Journal of Differential Geometry. 1976 Jan;11(1):147-65.
  • Prasad R, Akyol MA, Kumar S, Singh PK. Quasi bi-slant submersions in contact geometry. Cubo (Temuco). 2022 Apr;24(1):1-20.
  • Sari R, Akyol MA. Hemi-slant ξ⊥-Riemannian submersions in contact geometry. Filomat. 2020;34(11):3747-58.
  • Sahin B. Riemannian submersions, Riemannian maps in Hermitian geometry, and their applications. Academic Press; 2017 Jan 23.
  • Pastore AM, Falcitelli M, Ianus S. Riemannian submersions and related topics. World Scientific; 2004 Jun 21.
  • Ronsse, G.B.: Generic and skew CR-submanifolds of a Kaehler manifold. Bull. Inst. Math. Acad. Sin. 18, 127–141 (1990)
  • Sayar C, Taṣtan HM, Özdemir F, Tripathi MM. Generic submersions from Kaehler manifolds. Bulletin of the Malaysian Mathematical Sciences Society. 2020 Jan;43:809-31.
  • Bejan CL, Sayar C. Generic Submanifolds of Almost Contact Metric Manifolds. Bulletin of the Malaysian Mathematical Sciences Society. 2022 Sep;45(5):2571-95.
  • Blair DE. A survey of Riemannian contact geometry. Complex Manifolds. 2019 Jan 1;6(1):31-64.
  • Akyol MA. Conformal generic submersions. Turkish Journal of Mathematics 45.1 (2021): 201-219.
  • Tanveer F, Akyol MA, Alzulaibani AA. "On a submersion of generic submanifold of a nearly Kaehler manifold." International Journal of Geometric Methods in Modern Physics 19.04 (2022): 2250048.
  • Akyol MA. Generic Riemannian Submersions from Almost Product Riemannian. Gazi University Journal of Science 30, no. 3 (2017): 89-100.
Year 2023, , 69 - 74, 28.12.2023
https://doi.org/10.46810/tdfd.1297083

Abstract

References

  • O'Neill B. The fundamental equations of a submersion. Michigan Mathematical Journal. 1966 Dec;13(4):459-69.
  • Gray A. Pseudo-Riemannian almost product manifolds and submersions. Journal of Mathematics and Mechanics. 1967 Jan 1;16(7):715-37.
  • Watson B. Almost hermitian submersions. Journal of Differential Geometry. 1976 Jan;11(1):147-65.
  • Prasad R, Akyol MA, Kumar S, Singh PK. Quasi bi-slant submersions in contact geometry. Cubo (Temuco). 2022 Apr;24(1):1-20.
  • Sari R, Akyol MA. Hemi-slant ξ⊥-Riemannian submersions in contact geometry. Filomat. 2020;34(11):3747-58.
  • Sahin B. Riemannian submersions, Riemannian maps in Hermitian geometry, and their applications. Academic Press; 2017 Jan 23.
  • Pastore AM, Falcitelli M, Ianus S. Riemannian submersions and related topics. World Scientific; 2004 Jun 21.
  • Ronsse, G.B.: Generic and skew CR-submanifolds of a Kaehler manifold. Bull. Inst. Math. Acad. Sin. 18, 127–141 (1990)
  • Sayar C, Taṣtan HM, Özdemir F, Tripathi MM. Generic submersions from Kaehler manifolds. Bulletin of the Malaysian Mathematical Sciences Society. 2020 Jan;43:809-31.
  • Bejan CL, Sayar C. Generic Submanifolds of Almost Contact Metric Manifolds. Bulletin of the Malaysian Mathematical Sciences Society. 2022 Sep;45(5):2571-95.
  • Blair DE. A survey of Riemannian contact geometry. Complex Manifolds. 2019 Jan 1;6(1):31-64.
  • Akyol MA. Conformal generic submersions. Turkish Journal of Mathematics 45.1 (2021): 201-219.
  • Tanveer F, Akyol MA, Alzulaibani AA. "On a submersion of generic submanifold of a nearly Kaehler manifold." International Journal of Geometric Methods in Modern Physics 19.04 (2022): 2250048.
  • Akyol MA. Generic Riemannian Submersions from Almost Product Riemannian. Gazi University Journal of Science 30, no. 3 (2017): 89-100.
There are 14 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Cem Sayar 0000-0002-8339-4396

Early Pub Date December 28, 2023
Publication Date December 28, 2023
Published in Issue Year 2023

Cite

APA Sayar, C. (2023). Generic Submersions in Contact Geometry. Türk Doğa Ve Fen Dergisi, 12(4), 69-74. https://doi.org/10.46810/tdfd.1297083
AMA Sayar C. Generic Submersions in Contact Geometry. TDFD. December 2023;12(4):69-74. doi:10.46810/tdfd.1297083
Chicago Sayar, Cem. “Generic Submersions in Contact Geometry”. Türk Doğa Ve Fen Dergisi 12, no. 4 (December 2023): 69-74. https://doi.org/10.46810/tdfd.1297083.
EndNote Sayar C (December 1, 2023) Generic Submersions in Contact Geometry. Türk Doğa ve Fen Dergisi 12 4 69–74.
IEEE C. Sayar, “Generic Submersions in Contact Geometry”, TDFD, vol. 12, no. 4, pp. 69–74, 2023, doi: 10.46810/tdfd.1297083.
ISNAD Sayar, Cem. “Generic Submersions in Contact Geometry”. Türk Doğa ve Fen Dergisi 12/4 (December 2023), 69-74. https://doi.org/10.46810/tdfd.1297083.
JAMA Sayar C. Generic Submersions in Contact Geometry. TDFD. 2023;12:69–74.
MLA Sayar, Cem. “Generic Submersions in Contact Geometry”. Türk Doğa Ve Fen Dergisi, vol. 12, no. 4, 2023, pp. 69-74, doi:10.46810/tdfd.1297083.
Vancouver Sayar C. Generic Submersions in Contact Geometry. TDFD. 2023;12(4):69-74.