Research Article
BibTex RIS Cite

Silopi Termik Santrali Yakınlarındaki Tarım Alanlarında, Farklı Uzaklık ve Derinlikteki Toprakların Bazı Ağır Metal İçeriklerinin Araştırılması

Year 2023, , 139 - 146, 28.12.2023
https://doi.org/10.46810/tdfd.1365914

Abstract

Silopi Termik Santrali Şırnak ilinde bulunmaktadır ve yakıt olarak asfaltit kullanmaktadır. Santral bacalarından çıkan emisyonlar çeşitli faktörlere bağlı olarak bölgeye dağılma ve toprakta birikme ihtimali taşımaktadır. Bu durum topraktaki bazı ağır metallerin (Cr, Ni ve Cd gibi) konsantrasyonunu arttırabilmektedir. Bu çalışmada, tarımın yoğun olarak yapıldığı santrale yakın alanlardan alınan toprakların bitki tarafından alınabilir (ekstrakte edilebilir) ve toplam ağır metal içeriklerinin belirlemesi amaçlanmıştır. Silopi Termik Santraline yakın 7 farklı uzaklık sınıfı (U1, U2, U3, U4, U5, U6 ve U7) ve her sınıfta 3 farklı noktadan 21 adet ve 0-30 cm ve 30-60 cm olmak üzere iki farklı derinlikten toplam 42 adet toprak örneği alınmıştır. Toprak örneklerinde bitki tarafından alınabilir, krom (Cr), nikel (Ni), kadmiyum (Cd), kobalt (Co) ve kurşun (Pb) belirlenmiştir. Araştırma sonucunda ekstrakte edilebilir (mg kg-1); Cr 0.11-0.29, Ni 0.4-1.71, Cd 0.02-0.1, Co 0.17-0.39 ve Pb 0.82-2.37 toplam (mg kg-1); Cr 22-55, Ni 56-102, Cd 0.6-0.7, Co 41-51 ve Pb 69-93 aralığında değişmektedir. Toprakların istatistiksel olarak (p<0.01); Cd ve Co konsantrasyonu uzaklık ve derinlik bakımından önemli bulunmazken, Pb ve Ni uzaklık ve derinlik bakımından önemli, Cr ise yalnızca uzaklık bakımından önemli bulunmuştur. Santralden uzaklaşıldıkça Cr ve Ni konsantrasyonu azalma göstermiştir. Pb ve Ni konsantrasyonu 0-30 cm derinliğinde 30-60 cm derinliğine göre daha yoğun ölçülmüş ve bu da üst topraklara dışarıdan bir katılım riski ihtimalini düşündürmüştür. Fakat sonuç olarak incelenen tüm ağır metallerin hem toplam hem de ekstrakte edilebilir konsantrasyonlarının Türkiye Toprak Kirliliği Kontrol Yönetmeliği’nde izin verilen sınır değerleri aşmadığı görülmüştür.

Supporting Institution

Şırnak Üniversitesi BAP

Project Number

2022.FNAP.05.01.01

References

  • Yilmaz K, Inac S, Dikici H, Reyhanli AC. The Effects of A Coal Power Plant on The Environment and Wildlife in Southeastern Turkey. Journal of Environmental Biology. 2004;25(4):423-429.
  • ETBK. Electricity Republic of Turkey Ministry of Energy and Natural Resourcesenerji ;2020 (15.09.2023). Available from:gov.tr/tr-TR/Sayfalar/Elektrik”.
  • Uzun A, Arslan F. Social Acceptance of Thermal Power Plant Projects: Pasakoy (Balıkesir) Thermal Power Plant. Balikesir University The Journal of Social Sciences Institute. 2018;21(40): 27-52.
  • Llorens JF, Fernandez-Turiel JL, Querol X. The fate of trace elements in a large coal-fired power plant. Environmental Geology. 2001;40(4-5):409-416.
  • Goodarzi F, Huggins FE, Sanei H. Assessment of elements, speciation of As, Cr, Ni and emitted Hg for a Canadian power plant burning bituminous coal. International Journal of Coal Geology. 2008;74(1):1-12.
  • Akbay C, Bilgic A. The Opinions of the Community on the Effects of Thermal Power Plants on the Environment and Human Health in Afsin and Elbistan Districts. KSU Journal of Agriculture and Nature. 2020; 23(6):1587-1597.
  • Anonymous. Environmental Impacts of Thermal Power Plants and Measures to be Taken; 2020 (15.09.2023). Available from: https://www.akradyo.net/5790315496, 87115,6,Termik-santrallerin-.aspx.
  • Pacyna, J. M. Atmospheric emissions of arsenic, cadmium, lead and mercury from high temperature processes in power generation and industry." Lead, mercury, cadmium and arsenic in the environment. 1987;23:69.
  • Karaca A, Türkmen C, Arcak S, Haktanir K, Topcuoglu B, Yıldız H. The Determination of the Effect of Cayirhan Coal-Fired Power Plant Emission on Heavy Metals and Sulphur Contents of Regional Soils. Ankara University Journal of Environmental Sciences. 2009;1(1).
  • Karaca A. Effects Of Afsin-Elbistan Power Plant Emissions On The Physical, Chemical And Biological Properties Of Nearby Soils. Pamukkale University Engineering College Journal of Engineering Sciences. 2001;7(1):95-102.
  • Turkmenoglu M, Mert BA, Anil M. Investigation of Fly Ash Originated Heavy Metal Distribution in the Close Surroundings of Afsin Elbistan-A Thermal Power Plant with Gaussian Semivariogram Model. Bayburt University Journal of Science. 2022; 5(2):215-222
  • Rosenstein JS. Sanitary toxicological assesment of low concentrations of As2O3 in the athmosphere. Gg Sanit. 1970;35(1):15-20.
  • Pandey J, Pandey U. Accumulation of heavy metals in dietary vegetables and cultivated soil horizon in organic farming system in relation to atmospheric deposition in a seasonally dry tropical region of India. Environmental Monitoring and Assessment. 2009;148(1-4):61-74.
  • Xu Y, Dai S, Meng K, Wang Y, Ren W, Zhao L et al. Occurrence and risk assessment of potentially toxic elements and typical organic pollutants in contaminated rural soils. Science of the Total Environment. 2018;630:618-629.
  • Kirpik M, Buyuk G, Memet İ, Çelik A. The heavy metal content of some herbal plants on the roadside of Adana-Gaziantep highway. Journal of Agricultural Faculty of Gaziosmanpasa University (JAFAG). 2017;34(1):129-136.
  • Anonymous.https://www.cinergroup.com.tr /ener ji- madenci lik/silopi-elektrik-uretim; 2023a. Accessed On: 20.09.2023.
  • Demirci S, Sivrikaya O, Vapur H. Asphaltite as Energy Source; Formation, Content, Turkey Reserves, Cleaning. Omer Halisdemir University Journal of Engineering Sciences. 2019; 8(1), 312-325.
  • Lebkuchner RF, Orhun F, Wolf M. Asphaltic substances in southeastern Turkey. AAPG Bulletin, 1972; 56(10): 1939-1964.
  • Saltoglu T, Akyuz T, Alparslan E. Quantitative determination of molybdenum, nickel, vanadium and titanium in the asphaltites and asphaltite ashes by XRF-spectroscopy. Bulletin of the Mineral Research and Exploration Institute of Turkey. 1978; 91: 89-93.
  • Kosen İ. Functional Characteristics of Silopi City (MSc). Karabuk University, Department of Geography, Karabuk, Turkey; 2019.
  • Anonymous.https://www.meteoblue.com/en/weather/historyclimate/climatemodelled/silopi_turkey_300797; 2023b. Accessed On: 21.09.2023.
  • TKKY. T.C. Official Gazette, Turkish Soil Pollution Control Regulation (TKKY), July 3, No: 5403, Prime Ministry Press Office, Ankara; 2005.
  • Lindsay WL, Norvell WA. Development of A DTPA Soil Test for Zinc, Iron, Manganese and Copper. Soil Science Society of American Proceeding. 1978;42:421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
  • Hossner LR. Dissolution for Total Elemental Analysis. 3rd Edition. Methods of Soil Analysis. Part 3, Chemical Methods, D.L. Sparks, 46-64. Madison, WI: Soil Science Society of America and American Society of Agronomy; 1996.
  • SASS. Sas user’s guide: Statistic. statistical anal. systems institute inc.;1999.
  • Mehra A, Farago ME, Banerjee DK. Impact of fly ash from coal-fired power stations in Delhi, with particular reference to metal contamination. Environmental Monitoring and Assessment. 1998;50:15-35.
  • Polat M, Guler E, Akar G, Mordogan H, Ipekoglu Ü, Cohen HJ. Neutralization of acid mine drainage by Turkish lignitic fly ashes: role of organic additives in the fixation of toxic elements, J. Chem. Technol. Biotechnol. 2002;(77):372–376.
  • Koseoglu K, Polat M, Polat H. Encapsulating fly ash and acidic process waste water in brick structure. Journal of hazardous materials. 2010;176(1-3):957-964.
  • Simsek T, Kalkanci N, Büyük G. Determination of heavy metal pollution levels in agricultural soils: the case of Osmaniye. Mustafa Kemal University Journal of Agricultural Sciences. 2021; 26 (1):106-116.
  • Haktanir K, Ok SS, Karaca A, Arcak S, Cimen F, Topcuoglu B. et al. Generating Pollution Database of the Agricultural and Forest Soils Affected by Mugla-Yatagan Coal-Fired Power Plant Emissions and Investigating Vegetation Effects. Ankara University Journal of Environmental Sciences. 2010;2(1):13-30.
  • Akbay C, Dikici H, Ari H, Bilgic A. 2011. Economic analysis of environmental pollution caused by Afsin-Elbistan thermal power plant. TUBİTAK TAGOV, 109R027.
  • Kabata-Pendias A, Pendias H. Biochemistry of Trace Elements, Warszava, PWN; 1993.
  • Khan MR, Khan MM. Effect of varying concentration of nickel and cobalt on the plant growth and yield of chickpea. Australian Journal of Basic and Applied Sciences. 2010; 4(6):1036-1046.
  • Dartan G, Toroz İ. Investigation of Heavy Metal Pollution on Agricultural Lands in the South of Marmara Region. Marmara University Journal of Science. 2013; 25(1):24-40.
  • Kubier, A., Wilkin, R. T., & Pichler, T. Cadmium in soils and groundwater: a review. Applied Geochemistry. 2019; 108, 104388.
  • Mejstřík, V., & Švácha, J. Concentrations of Co, Cd, Cr, Ni and Zn in crop plants cultivated in the vicinity of coal-fired power plants. Science of the total environment. 1988; 72, 57-67.
  • Çancı,B. Geochemical assessment of environmental effects of fly ash from Seyitömer (Kütahya) thermal power plant (Master's thesis) Middle East Technical University; 1998.
  • Sushil S, Batra VS. Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. Fuel. 2006; 85(17-18):2676-2679.
  • Seven T, Busra C, Darende BN, Sevda O. Heavy Metals Pollution in Air and Soil. National Research Journal of Environmental Sciences. 2018; 1(2): 91-103.
  • Turer D, Maynard JB, Sansalone JJ. Heavy metal contamination in soils of urban highways comparison between runoff and soil concentrations at Cincinnati, Ohio. Water, Air, and Soil Pollution. 2001; 132: 293-314.

Investigation of Some Heavy Metal Contents of Soils at Different Distances and Depths in Agricultural Areas Near the Silopi Thermal Power Plant

Year 2023, , 139 - 146, 28.12.2023
https://doi.org/10.46810/tdfd.1365914

Abstract

Silopi Thermal Power Plant is located in Şırnak province and uses asphaltite as fuel. Emissions from the power plant chimneys are likely to be dispersed in the region and accumulate on soils due to various factors. This may increase the concentrations of some heavy metals (such as Cr, Ni and Cd) in soils. In this study, it was aimed to determine the plant-available (extractable) and total heavy metal contents of soils taken from areas close to the power plant where agriculture is intensively practiced. A total of 42 soil samples were taken from 7 different distance classes (D1, D2, D3, D4, D4, D5, D6 and D7) and 21 soil samples from 3 different points in each class and two different depths (0-30 cm and 30-60 cm) close to Thermal Power Plant. Plant-available chromium (Cr), nickel (Ni), cadmium (Cd), cobalt (Co) and lead (Pb) were determined in soil samples. As a result of the research; extractable (mg kg-1) Cr 0.11-0.29, Ni 0.4-1.71, Cd 0.02-0.1, Co 0.17-0.39 and Pb 0.82-2.37 total (mg kg-1); Cr 22-55, Ni 56-102, Cd 0.6-0.7, Co 41-51 and Pb 69-93. Statistically (p<0.01); Cd and Co concentrations were not significant in terms of distance and depth, Pb and Ni were significant in terms of distance and depth and Cr was significant only in terms of distance. Cr and Ni concentrations decreased with distance from the power plant. Pb and Ni concentrations were higher in the 0-30 cm depth than in the 30-60 cm depth, suggesting the possibility of an external contamination of the topsoil. However, in conclusion, both total and extractable concentrations of all the heavy metals examined did not exceed the permissible limit values in the Turkish Soil Pollution Control Regulation.

Project Number

2022.FNAP.05.01.01

References

  • Yilmaz K, Inac S, Dikici H, Reyhanli AC. The Effects of A Coal Power Plant on The Environment and Wildlife in Southeastern Turkey. Journal of Environmental Biology. 2004;25(4):423-429.
  • ETBK. Electricity Republic of Turkey Ministry of Energy and Natural Resourcesenerji ;2020 (15.09.2023). Available from:gov.tr/tr-TR/Sayfalar/Elektrik”.
  • Uzun A, Arslan F. Social Acceptance of Thermal Power Plant Projects: Pasakoy (Balıkesir) Thermal Power Plant. Balikesir University The Journal of Social Sciences Institute. 2018;21(40): 27-52.
  • Llorens JF, Fernandez-Turiel JL, Querol X. The fate of trace elements in a large coal-fired power plant. Environmental Geology. 2001;40(4-5):409-416.
  • Goodarzi F, Huggins FE, Sanei H. Assessment of elements, speciation of As, Cr, Ni and emitted Hg for a Canadian power plant burning bituminous coal. International Journal of Coal Geology. 2008;74(1):1-12.
  • Akbay C, Bilgic A. The Opinions of the Community on the Effects of Thermal Power Plants on the Environment and Human Health in Afsin and Elbistan Districts. KSU Journal of Agriculture and Nature. 2020; 23(6):1587-1597.
  • Anonymous. Environmental Impacts of Thermal Power Plants and Measures to be Taken; 2020 (15.09.2023). Available from: https://www.akradyo.net/5790315496, 87115,6,Termik-santrallerin-.aspx.
  • Pacyna, J. M. Atmospheric emissions of arsenic, cadmium, lead and mercury from high temperature processes in power generation and industry." Lead, mercury, cadmium and arsenic in the environment. 1987;23:69.
  • Karaca A, Türkmen C, Arcak S, Haktanir K, Topcuoglu B, Yıldız H. The Determination of the Effect of Cayirhan Coal-Fired Power Plant Emission on Heavy Metals and Sulphur Contents of Regional Soils. Ankara University Journal of Environmental Sciences. 2009;1(1).
  • Karaca A. Effects Of Afsin-Elbistan Power Plant Emissions On The Physical, Chemical And Biological Properties Of Nearby Soils. Pamukkale University Engineering College Journal of Engineering Sciences. 2001;7(1):95-102.
  • Turkmenoglu M, Mert BA, Anil M. Investigation of Fly Ash Originated Heavy Metal Distribution in the Close Surroundings of Afsin Elbistan-A Thermal Power Plant with Gaussian Semivariogram Model. Bayburt University Journal of Science. 2022; 5(2):215-222
  • Rosenstein JS. Sanitary toxicological assesment of low concentrations of As2O3 in the athmosphere. Gg Sanit. 1970;35(1):15-20.
  • Pandey J, Pandey U. Accumulation of heavy metals in dietary vegetables and cultivated soil horizon in organic farming system in relation to atmospheric deposition in a seasonally dry tropical region of India. Environmental Monitoring and Assessment. 2009;148(1-4):61-74.
  • Xu Y, Dai S, Meng K, Wang Y, Ren W, Zhao L et al. Occurrence and risk assessment of potentially toxic elements and typical organic pollutants in contaminated rural soils. Science of the Total Environment. 2018;630:618-629.
  • Kirpik M, Buyuk G, Memet İ, Çelik A. The heavy metal content of some herbal plants on the roadside of Adana-Gaziantep highway. Journal of Agricultural Faculty of Gaziosmanpasa University (JAFAG). 2017;34(1):129-136.
  • Anonymous.https://www.cinergroup.com.tr /ener ji- madenci lik/silopi-elektrik-uretim; 2023a. Accessed On: 20.09.2023.
  • Demirci S, Sivrikaya O, Vapur H. Asphaltite as Energy Source; Formation, Content, Turkey Reserves, Cleaning. Omer Halisdemir University Journal of Engineering Sciences. 2019; 8(1), 312-325.
  • Lebkuchner RF, Orhun F, Wolf M. Asphaltic substances in southeastern Turkey. AAPG Bulletin, 1972; 56(10): 1939-1964.
  • Saltoglu T, Akyuz T, Alparslan E. Quantitative determination of molybdenum, nickel, vanadium and titanium in the asphaltites and asphaltite ashes by XRF-spectroscopy. Bulletin of the Mineral Research and Exploration Institute of Turkey. 1978; 91: 89-93.
  • Kosen İ. Functional Characteristics of Silopi City (MSc). Karabuk University, Department of Geography, Karabuk, Turkey; 2019.
  • Anonymous.https://www.meteoblue.com/en/weather/historyclimate/climatemodelled/silopi_turkey_300797; 2023b. Accessed On: 21.09.2023.
  • TKKY. T.C. Official Gazette, Turkish Soil Pollution Control Regulation (TKKY), July 3, No: 5403, Prime Ministry Press Office, Ankara; 2005.
  • Lindsay WL, Norvell WA. Development of A DTPA Soil Test for Zinc, Iron, Manganese and Copper. Soil Science Society of American Proceeding. 1978;42:421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
  • Hossner LR. Dissolution for Total Elemental Analysis. 3rd Edition. Methods of Soil Analysis. Part 3, Chemical Methods, D.L. Sparks, 46-64. Madison, WI: Soil Science Society of America and American Society of Agronomy; 1996.
  • SASS. Sas user’s guide: Statistic. statistical anal. systems institute inc.;1999.
  • Mehra A, Farago ME, Banerjee DK. Impact of fly ash from coal-fired power stations in Delhi, with particular reference to metal contamination. Environmental Monitoring and Assessment. 1998;50:15-35.
  • Polat M, Guler E, Akar G, Mordogan H, Ipekoglu Ü, Cohen HJ. Neutralization of acid mine drainage by Turkish lignitic fly ashes: role of organic additives in the fixation of toxic elements, J. Chem. Technol. Biotechnol. 2002;(77):372–376.
  • Koseoglu K, Polat M, Polat H. Encapsulating fly ash and acidic process waste water in brick structure. Journal of hazardous materials. 2010;176(1-3):957-964.
  • Simsek T, Kalkanci N, Büyük G. Determination of heavy metal pollution levels in agricultural soils: the case of Osmaniye. Mustafa Kemal University Journal of Agricultural Sciences. 2021; 26 (1):106-116.
  • Haktanir K, Ok SS, Karaca A, Arcak S, Cimen F, Topcuoglu B. et al. Generating Pollution Database of the Agricultural and Forest Soils Affected by Mugla-Yatagan Coal-Fired Power Plant Emissions and Investigating Vegetation Effects. Ankara University Journal of Environmental Sciences. 2010;2(1):13-30.
  • Akbay C, Dikici H, Ari H, Bilgic A. 2011. Economic analysis of environmental pollution caused by Afsin-Elbistan thermal power plant. TUBİTAK TAGOV, 109R027.
  • Kabata-Pendias A, Pendias H. Biochemistry of Trace Elements, Warszava, PWN; 1993.
  • Khan MR, Khan MM. Effect of varying concentration of nickel and cobalt on the plant growth and yield of chickpea. Australian Journal of Basic and Applied Sciences. 2010; 4(6):1036-1046.
  • Dartan G, Toroz İ. Investigation of Heavy Metal Pollution on Agricultural Lands in the South of Marmara Region. Marmara University Journal of Science. 2013; 25(1):24-40.
  • Kubier, A., Wilkin, R. T., & Pichler, T. Cadmium in soils and groundwater: a review. Applied Geochemistry. 2019; 108, 104388.
  • Mejstřík, V., & Švácha, J. Concentrations of Co, Cd, Cr, Ni and Zn in crop plants cultivated in the vicinity of coal-fired power plants. Science of the total environment. 1988; 72, 57-67.
  • Çancı,B. Geochemical assessment of environmental effects of fly ash from Seyitömer (Kütahya) thermal power plant (Master's thesis) Middle East Technical University; 1998.
  • Sushil S, Batra VS. Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. Fuel. 2006; 85(17-18):2676-2679.
  • Seven T, Busra C, Darende BN, Sevda O. Heavy Metals Pollution in Air and Soil. National Research Journal of Environmental Sciences. 2018; 1(2): 91-103.
  • Turer D, Maynard JB, Sansalone JJ. Heavy metal contamination in soils of urban highways comparison between runoff and soil concentrations at Cincinnati, Ohio. Water, Air, and Soil Pollution. 2001; 132: 293-314.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Sciences (Other)
Journal Section Articles
Authors

Bedriye Bilir 0000-0002-0038-9509

Hava Şeyma Yılmaz 0000-0002-2670-401X

Seyyid Irmak 0000-0002-7839-7912

Mikail Doğan 0000-0003-4940-0147

Project Number 2022.FNAP.05.01.01
Early Pub Date December 28, 2023
Publication Date December 28, 2023
Published in Issue Year 2023

Cite

APA Bilir, B., Yılmaz, H. Ş., Irmak, S., Doğan, M. (2023). Silopi Termik Santrali Yakınlarındaki Tarım Alanlarında, Farklı Uzaklık ve Derinlikteki Toprakların Bazı Ağır Metal İçeriklerinin Araştırılması. Türk Doğa Ve Fen Dergisi, 12(4), 139-146. https://doi.org/10.46810/tdfd.1365914
AMA Bilir B, Yılmaz HŞ, Irmak S, Doğan M. Silopi Termik Santrali Yakınlarındaki Tarım Alanlarında, Farklı Uzaklık ve Derinlikteki Toprakların Bazı Ağır Metal İçeriklerinin Araştırılması. TDFD. December 2023;12(4):139-146. doi:10.46810/tdfd.1365914
Chicago Bilir, Bedriye, Hava Şeyma Yılmaz, Seyyid Irmak, and Mikail Doğan. “Silopi Termik Santrali Yakınlarındaki Tarım Alanlarında, Farklı Uzaklık Ve Derinlikteki Toprakların Bazı Ağır Metal İçeriklerinin Araştırılması”. Türk Doğa Ve Fen Dergisi 12, no. 4 (December 2023): 139-46. https://doi.org/10.46810/tdfd.1365914.
EndNote Bilir B, Yılmaz HŞ, Irmak S, Doğan M (December 1, 2023) Silopi Termik Santrali Yakınlarındaki Tarım Alanlarında, Farklı Uzaklık ve Derinlikteki Toprakların Bazı Ağır Metal İçeriklerinin Araştırılması. Türk Doğa ve Fen Dergisi 12 4 139–146.
IEEE B. Bilir, H. Ş. Yılmaz, S. Irmak, and M. Doğan, “Silopi Termik Santrali Yakınlarındaki Tarım Alanlarında, Farklı Uzaklık ve Derinlikteki Toprakların Bazı Ağır Metal İçeriklerinin Araştırılması”, TDFD, vol. 12, no. 4, pp. 139–146, 2023, doi: 10.46810/tdfd.1365914.
ISNAD Bilir, Bedriye et al. “Silopi Termik Santrali Yakınlarındaki Tarım Alanlarında, Farklı Uzaklık Ve Derinlikteki Toprakların Bazı Ağır Metal İçeriklerinin Araştırılması”. Türk Doğa ve Fen Dergisi 12/4 (December 2023), 139-146. https://doi.org/10.46810/tdfd.1365914.
JAMA Bilir B, Yılmaz HŞ, Irmak S, Doğan M. Silopi Termik Santrali Yakınlarındaki Tarım Alanlarında, Farklı Uzaklık ve Derinlikteki Toprakların Bazı Ağır Metal İçeriklerinin Araştırılması. TDFD. 2023;12:139–146.
MLA Bilir, Bedriye et al. “Silopi Termik Santrali Yakınlarındaki Tarım Alanlarında, Farklı Uzaklık Ve Derinlikteki Toprakların Bazı Ağır Metal İçeriklerinin Araştırılması”. Türk Doğa Ve Fen Dergisi, vol. 12, no. 4, 2023, pp. 139-46, doi:10.46810/tdfd.1365914.
Vancouver Bilir B, Yılmaz HŞ, Irmak S, Doğan M. Silopi Termik Santrali Yakınlarındaki Tarım Alanlarında, Farklı Uzaklık ve Derinlikteki Toprakların Bazı Ağır Metal İçeriklerinin Araştırılması. TDFD. 2023;12(4):139-46.