Research Article
BibTex RIS Cite
Year 2023, , 107 - 113, 28.12.2023
https://doi.org/10.46810/tdfd.1375041

Abstract

References

  • Zhao, S., Tang, Y., Wang, R., & Najafi, M. (2022). Mechanisms of cancer cell death induction by paclitaxel: an updated review. Apoptosis, 27(9-10), 647-667.
  • Sousa-Pimenta, M., Estevinho, L. M., Szopa, A., Basit, M., Khan, K., Armaghan, M., ... & Sharifi-Rad, J. (2023). Chemotherapeutic properties and side-effects associated with the clinical practice of terpene alkaloids: paclitaxel, docetaxel, and cabazitaxel. Frontiers in Pharmacology, 14, 1157306.
  • Panebianco, C., Pisati, F., Villani, A., Andolfo, A., Ulaszewska, M., Bellini, E., ... & Pazienza, V. (2023). Counteracting gemcitabine+ nab-paclitaxel induced dysbiosis in KRAS wild type and KRASG12D mutated pancreatic cancer in vivo model. Cell Death Discovery, 9(1), 116.
  • Cavalier, A.N., Clayton, Z., Wahl, D., Seals, D., & LaRocca, T. (2020). The Effects of Chemotherapeutic Agents and a Mitochondrial Antioxidant on the Brain Transcriptome and Cognitive Function. The FASEB Journal, 34(S1), 1-1.
  • Kikuchi, H., Yuan, B., Hu, X., ve Okazaki, M. (2019). Chemopreventive and anticancer activity of flavonoids and its possibility for clinical use by combining with conventional chemotherapeutic agents. American Journal of Cancer Research, 9(8), 1517.
  • Ayna, A., Özbolat, S.N., & Darendelioglu, E. (2020). Quercetin, chrysin, caffeic acid and ferulic acid ameliorate cyclophosphamide-induced toxicities in SH-SY5Y cells. Molecular Biology Reports, 47(11), 8535-8543.
  • Celik, Z.B., Cankara, F.N., & Gunaydin, C. (2020). Alterations in the matrix metalloproteinase-3 promoter methylation after common chemotherapeutics: In vitro study of paclitaxel, cisplatin and methotrexate in the MCF-7 and SH-SY5Y cell lines. Molecular Biology Reports, 47(11), 8987-8995.
  • Ayna, A. (2021). Caffeic acid prevents hydrogen peroxide-induced oxidative damage in SH-SY5Y cell line through mitigation of oxidative stress and apoptosis. Bratislava Medical Journal/Bratislavske Lekarske Listy, 122(2).
  • Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food chemistry, 383, 132531.
  • Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of nutritional science, 5, e47.
  • Mani, R., & Natesan, V. (2018). Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry, 145, 187-196.
  • Kucukler, S., Benzer, F., Yildirim, S., Gur, C., Kandemir, F. M., Bengu, A. S., ... & Dortbudak, M. B. (2021). Protective effects of chrysin against oxidative stress and inflammation induced by lead acetate in rat kidneys: a biochemical and histopathological approach. Biological Trace Element Research, 199(4), 1501-1514.
  • Özbolat, S. N., & Ayna, A. (2021). Chrysin suppresses HT-29 cell death induced by diclofenac through apoptosis and oxidative damage. Nutrition and Cancer, 73(8), 1419-1428.
  • Varışlı, B., Caglayan, C., Kandemir, F. M., Gür, C., Ayna, A., Genç, A., & Taysı, S. (2023). Chrysin mitigates diclofenac-induced hepatotoxicity by modulating oxidative stress, apoptosis, autophagy and endoplasmic reticulum stress in rats. Molecular Biology Reports, 50(1), 433-442.
  • Zhu, L., & Chen, L. (2019). Progress in research on paclitaxel and tumor immunotherapy. Cellular & molecular biology letters, 24, 1-11.
  • Saleh, E. A. M., Al-Dolaimy, F., Baymakov, S., Ullah, M. I., Khlewee, I. H., Bisht, Y. S., & Alsaalamy, A. H. (2023). Oxidative stress affects the beginning of the growth of cancer cells through a variety of routes. Pathology-Research and Practice, 154664.
  • Ursini, F., & Maiorino, M. (2020). Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radical Biology and Medicine, 152, 175-185.
  • Angelova, P. R., Esteras, N., & Abramov, A. Y. (2021). Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: Finding ways for prevention. Medicinal Research Reviews, 41(2), 770-784.
  • Negre-Salvayre, A., Auge, N., Ayala, V., Basaga, H., Boada, J., Brenke, R., ... & Zarkovic, N. (2010). Pathological aspects of lipid peroxidation. Free radical research, 44(10), 1125-1171.
  • Zbârcea, C.E., Ciotu, I.C., Bild, V., ChiriŢă, C., Tănase, A. M., Şeremet, O.C., …ve Negreş, S. (2017). Therapeutic potential of certain drug combinations on paclitaxel-induced peripheral neuropathy in rats. Rom. J. Morphol. Embryol, 58, 507-516.
  • Malekinejad, H., Ahsan, S., Delkhosh-Kasmaie, F., Cheraghi, H., Rezaei-Golmisheh, A., ve Janbaz-Acyabar, H. (2016). Cardioprotective effect of royal jelly on paclitaxel-induced cardio-toxicity in rats. Iranian journal of basic medical sciences, 19(2), 221.
  • Gur, C., Kandemir, F.M., Caglayan, C., ve Satıcı, E. (2022). Chemopreventive effects of hesperidin against paclitaxel-induced hepatotoxicity and nephrotoxicity via amendment of Nrf2/HO-1 and caspase-3/Bax/Bcl-2 signaling pathways. Chemico-Biological Interactions, 365, 110073.
  • Pasquier, E., Honore, S., Pourroy, B., Jordan, M. A., Lehmann, M., Briand, C., & Braguer, D. (2005). Antiangiogenic concentrations of paclitaxel induce an increase in microtubule dynamics in endothelial cells but not in cancer cells. Cancer Research, 65(6), 2433-2440.
  • Wang, T. H., Wang, H. S., & Soong, Y. K. (2000). Paclitaxel‐induced cell death: where the cell cycle and apoptosis come together. Cancer: Interdisciplinary International Journal of the American Cancer Society, 88(11), 2619-2628
  • Horwitz, S. B., Cohen, D., Rao, S., Ringel, I., Shen, H. J., & Yang, C. P. (1993). Taxol: mechanisms of action and resistance. Journal of the National Cancer Institute. Monographs, 15, 55-61.
  • Sosa, V., Moliné, T., Somoza, R., Paciucci, R., Kondoh, H., & LLeonart, M. E. (2013). Oxidative stress and cancer: an overview. Ageing research reviews, 12(1), 376-390.
  • Semis, H.S., Kandemir, F. M., Kaynar, O., Dogan, T., Arikan, S.M. (2021). The protective effects of hesperidin against paclitaxel-induced peripheral neuropathy in rats. Life Sciences, 287, 120104.
  • Yardım, A., Kandemir, F. M., Çomaklı, S., Özdemir, S., Caglayan, C., Kucukler, S., ve Çelik, H. (2021). Protective effects of curcumin against paclitaxel-induced spinal cord and sciatic nerve injuries in rats. Neurochemical Research, 46(2), 379-395.
  • Darendelioglu, E. (2020). Neuroprotective effects of chrysin on diclofenac-induced apoptosis in SH-SY5Y cells. Neurochemical research, 45(5), 1064-1071.
  • Temel, Y., Kucukler, S., Yıldırım, S., Caglayan, C., & Kandemir, F. M. (2020). Protective effect of chrysin on cyclophosphamide-induced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress, inflammation, and apoptosis. Naunyn-Schmiedeberg's archives of pharmacology, 393, 325-337.
  • Temel, Y., Çağlayan, C., Ahmed, B. M., Kandemir, F. M., & Çiftci, M. (2021). The effects of chrysin and naringin on cyclophosphamide-induced erythrocyte damage in rats: biochemical evaluation of some enzyme activities in vivo and in vitro. Naunyn-Schmiedeberg's Archives of Pharmacology, 394, 645-654.
  • Samarghandian, S., Farkhondeh, T., & Azimi-Nezhad, M. (2017). Protective effects of chrysin against drugs and toxic agents. Dose-Response, 15(2), 1559325817711782.

Investigation of the Protective Effects of Chrysin Against Paclitaxel-Induced Oxidative Stress and Apoptosis in Human Neuronal SH-SY5Y Cells

Year 2023, , 107 - 113, 28.12.2023
https://doi.org/10.46810/tdfd.1375041

Abstract

In this study, the potential protective effects of chrysin, an important flavonoid, against paclitaxel-induced cell toxicity in the SH-SY5Y nerve cell line as an in vitro model, were investigated by cell viability analysis, lipid peroxidation analysis and quantitative simultaneous PCR methods. In the study, firstly, paclitaxel and chrysin were applied to the SH-SY5Y cell line at different concentrations in the range of 0-30 µM, and the results showed that 15 and 30 µM paclitaxel reduced cell viability, and 500 and 1000 µM chrysin application reduced these effects. In addition, chrysin application has been shown to significantly reduce malondialdehyde levels in paclitaxel-induced cells. The study also examined the effects of paclitaxel and chrysin application on apoptotic and antiapoptotic genes, mostly located in the intrinsic pathway, and showed that chrysin significantly reduced the levels of caspase 10, caspase 8, caspase 6, p53 and NFKB, and increased the Bcl-2 level compared to the paclitaxel-treated group. The results of this study suggest that chrysin's suppression of oxidative stress and apoptotic cell death may be an effective strategy for the treatment of paclitaxel-induced SH-SY5Y cytotoxicity.

References

  • Zhao, S., Tang, Y., Wang, R., & Najafi, M. (2022). Mechanisms of cancer cell death induction by paclitaxel: an updated review. Apoptosis, 27(9-10), 647-667.
  • Sousa-Pimenta, M., Estevinho, L. M., Szopa, A., Basit, M., Khan, K., Armaghan, M., ... & Sharifi-Rad, J. (2023). Chemotherapeutic properties and side-effects associated with the clinical practice of terpene alkaloids: paclitaxel, docetaxel, and cabazitaxel. Frontiers in Pharmacology, 14, 1157306.
  • Panebianco, C., Pisati, F., Villani, A., Andolfo, A., Ulaszewska, M., Bellini, E., ... & Pazienza, V. (2023). Counteracting gemcitabine+ nab-paclitaxel induced dysbiosis in KRAS wild type and KRASG12D mutated pancreatic cancer in vivo model. Cell Death Discovery, 9(1), 116.
  • Cavalier, A.N., Clayton, Z., Wahl, D., Seals, D., & LaRocca, T. (2020). The Effects of Chemotherapeutic Agents and a Mitochondrial Antioxidant on the Brain Transcriptome and Cognitive Function. The FASEB Journal, 34(S1), 1-1.
  • Kikuchi, H., Yuan, B., Hu, X., ve Okazaki, M. (2019). Chemopreventive and anticancer activity of flavonoids and its possibility for clinical use by combining with conventional chemotherapeutic agents. American Journal of Cancer Research, 9(8), 1517.
  • Ayna, A., Özbolat, S.N., & Darendelioglu, E. (2020). Quercetin, chrysin, caffeic acid and ferulic acid ameliorate cyclophosphamide-induced toxicities in SH-SY5Y cells. Molecular Biology Reports, 47(11), 8535-8543.
  • Celik, Z.B., Cankara, F.N., & Gunaydin, C. (2020). Alterations in the matrix metalloproteinase-3 promoter methylation after common chemotherapeutics: In vitro study of paclitaxel, cisplatin and methotrexate in the MCF-7 and SH-SY5Y cell lines. Molecular Biology Reports, 47(11), 8987-8995.
  • Ayna, A. (2021). Caffeic acid prevents hydrogen peroxide-induced oxidative damage in SH-SY5Y cell line through mitigation of oxidative stress and apoptosis. Bratislava Medical Journal/Bratislavske Lekarske Listy, 122(2).
  • Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food chemistry, 383, 132531.
  • Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of nutritional science, 5, e47.
  • Mani, R., & Natesan, V. (2018). Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry, 145, 187-196.
  • Kucukler, S., Benzer, F., Yildirim, S., Gur, C., Kandemir, F. M., Bengu, A. S., ... & Dortbudak, M. B. (2021). Protective effects of chrysin against oxidative stress and inflammation induced by lead acetate in rat kidneys: a biochemical and histopathological approach. Biological Trace Element Research, 199(4), 1501-1514.
  • Özbolat, S. N., & Ayna, A. (2021). Chrysin suppresses HT-29 cell death induced by diclofenac through apoptosis and oxidative damage. Nutrition and Cancer, 73(8), 1419-1428.
  • Varışlı, B., Caglayan, C., Kandemir, F. M., Gür, C., Ayna, A., Genç, A., & Taysı, S. (2023). Chrysin mitigates diclofenac-induced hepatotoxicity by modulating oxidative stress, apoptosis, autophagy and endoplasmic reticulum stress in rats. Molecular Biology Reports, 50(1), 433-442.
  • Zhu, L., & Chen, L. (2019). Progress in research on paclitaxel and tumor immunotherapy. Cellular & molecular biology letters, 24, 1-11.
  • Saleh, E. A. M., Al-Dolaimy, F., Baymakov, S., Ullah, M. I., Khlewee, I. H., Bisht, Y. S., & Alsaalamy, A. H. (2023). Oxidative stress affects the beginning of the growth of cancer cells through a variety of routes. Pathology-Research and Practice, 154664.
  • Ursini, F., & Maiorino, M. (2020). Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radical Biology and Medicine, 152, 175-185.
  • Angelova, P. R., Esteras, N., & Abramov, A. Y. (2021). Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: Finding ways for prevention. Medicinal Research Reviews, 41(2), 770-784.
  • Negre-Salvayre, A., Auge, N., Ayala, V., Basaga, H., Boada, J., Brenke, R., ... & Zarkovic, N. (2010). Pathological aspects of lipid peroxidation. Free radical research, 44(10), 1125-1171.
  • Zbârcea, C.E., Ciotu, I.C., Bild, V., ChiriŢă, C., Tănase, A. M., Şeremet, O.C., …ve Negreş, S. (2017). Therapeutic potential of certain drug combinations on paclitaxel-induced peripheral neuropathy in rats. Rom. J. Morphol. Embryol, 58, 507-516.
  • Malekinejad, H., Ahsan, S., Delkhosh-Kasmaie, F., Cheraghi, H., Rezaei-Golmisheh, A., ve Janbaz-Acyabar, H. (2016). Cardioprotective effect of royal jelly on paclitaxel-induced cardio-toxicity in rats. Iranian journal of basic medical sciences, 19(2), 221.
  • Gur, C., Kandemir, F.M., Caglayan, C., ve Satıcı, E. (2022). Chemopreventive effects of hesperidin against paclitaxel-induced hepatotoxicity and nephrotoxicity via amendment of Nrf2/HO-1 and caspase-3/Bax/Bcl-2 signaling pathways. Chemico-Biological Interactions, 365, 110073.
  • Pasquier, E., Honore, S., Pourroy, B., Jordan, M. A., Lehmann, M., Briand, C., & Braguer, D. (2005). Antiangiogenic concentrations of paclitaxel induce an increase in microtubule dynamics in endothelial cells but not in cancer cells. Cancer Research, 65(6), 2433-2440.
  • Wang, T. H., Wang, H. S., & Soong, Y. K. (2000). Paclitaxel‐induced cell death: where the cell cycle and apoptosis come together. Cancer: Interdisciplinary International Journal of the American Cancer Society, 88(11), 2619-2628
  • Horwitz, S. B., Cohen, D., Rao, S., Ringel, I., Shen, H. J., & Yang, C. P. (1993). Taxol: mechanisms of action and resistance. Journal of the National Cancer Institute. Monographs, 15, 55-61.
  • Sosa, V., Moliné, T., Somoza, R., Paciucci, R., Kondoh, H., & LLeonart, M. E. (2013). Oxidative stress and cancer: an overview. Ageing research reviews, 12(1), 376-390.
  • Semis, H.S., Kandemir, F. M., Kaynar, O., Dogan, T., Arikan, S.M. (2021). The protective effects of hesperidin against paclitaxel-induced peripheral neuropathy in rats. Life Sciences, 287, 120104.
  • Yardım, A., Kandemir, F. M., Çomaklı, S., Özdemir, S., Caglayan, C., Kucukler, S., ve Çelik, H. (2021). Protective effects of curcumin against paclitaxel-induced spinal cord and sciatic nerve injuries in rats. Neurochemical Research, 46(2), 379-395.
  • Darendelioglu, E. (2020). Neuroprotective effects of chrysin on diclofenac-induced apoptosis in SH-SY5Y cells. Neurochemical research, 45(5), 1064-1071.
  • Temel, Y., Kucukler, S., Yıldırım, S., Caglayan, C., & Kandemir, F. M. (2020). Protective effect of chrysin on cyclophosphamide-induced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress, inflammation, and apoptosis. Naunyn-Schmiedeberg's archives of pharmacology, 393, 325-337.
  • Temel, Y., Çağlayan, C., Ahmed, B. M., Kandemir, F. M., & Çiftci, M. (2021). The effects of chrysin and naringin on cyclophosphamide-induced erythrocyte damage in rats: biochemical evaluation of some enzyme activities in vivo and in vitro. Naunyn-Schmiedeberg's Archives of Pharmacology, 394, 645-654.
  • Samarghandian, S., Farkhondeh, T., & Azimi-Nezhad, M. (2017). Protective effects of chrysin against drugs and toxic agents. Dose-Response, 15(2), 1559325817711782.
There are 32 citations in total.

Details

Primary Language English
Subjects Cell Development, Proliferation and Death
Journal Section Articles
Authors

Adnan Ayna 0000-0001-6801-6242

Sema Nur Varan 0000-0003-2719-6245

Early Pub Date December 28, 2023
Publication Date December 28, 2023
Submission Date October 12, 2023
Acceptance Date December 2, 2023
Published in Issue Year 2023

Cite

APA Ayna, A., & Varan, S. N. (2023). Investigation of the Protective Effects of Chrysin Against Paclitaxel-Induced Oxidative Stress and Apoptosis in Human Neuronal SH-SY5Y Cells. Türk Doğa Ve Fen Dergisi, 12(4), 107-113. https://doi.org/10.46810/tdfd.1375041
AMA Ayna A, Varan SN. Investigation of the Protective Effects of Chrysin Against Paclitaxel-Induced Oxidative Stress and Apoptosis in Human Neuronal SH-SY5Y Cells. TDFD. December 2023;12(4):107-113. doi:10.46810/tdfd.1375041
Chicago Ayna, Adnan, and Sema Nur Varan. “Investigation of the Protective Effects of Chrysin Against Paclitaxel-Induced Oxidative Stress and Apoptosis in Human Neuronal SH-SY5Y Cells”. Türk Doğa Ve Fen Dergisi 12, no. 4 (December 2023): 107-13. https://doi.org/10.46810/tdfd.1375041.
EndNote Ayna A, Varan SN (December 1, 2023) Investigation of the Protective Effects of Chrysin Against Paclitaxel-Induced Oxidative Stress and Apoptosis in Human Neuronal SH-SY5Y Cells. Türk Doğa ve Fen Dergisi 12 4 107–113.
IEEE A. Ayna and S. N. Varan, “Investigation of the Protective Effects of Chrysin Against Paclitaxel-Induced Oxidative Stress and Apoptosis in Human Neuronal SH-SY5Y Cells”, TDFD, vol. 12, no. 4, pp. 107–113, 2023, doi: 10.46810/tdfd.1375041.
ISNAD Ayna, Adnan - Varan, Sema Nur. “Investigation of the Protective Effects of Chrysin Against Paclitaxel-Induced Oxidative Stress and Apoptosis in Human Neuronal SH-SY5Y Cells”. Türk Doğa ve Fen Dergisi 12/4 (December 2023), 107-113. https://doi.org/10.46810/tdfd.1375041.
JAMA Ayna A, Varan SN. Investigation of the Protective Effects of Chrysin Against Paclitaxel-Induced Oxidative Stress and Apoptosis in Human Neuronal SH-SY5Y Cells. TDFD. 2023;12:107–113.
MLA Ayna, Adnan and Sema Nur Varan. “Investigation of the Protective Effects of Chrysin Against Paclitaxel-Induced Oxidative Stress and Apoptosis in Human Neuronal SH-SY5Y Cells”. Türk Doğa Ve Fen Dergisi, vol. 12, no. 4, 2023, pp. 107-13, doi:10.46810/tdfd.1375041.
Vancouver Ayna A, Varan SN. Investigation of the Protective Effects of Chrysin Against Paclitaxel-Induced Oxidative Stress and Apoptosis in Human Neuronal SH-SY5Y Cells. TDFD. 2023;12(4):107-13.