Research Article
BibTex RIS Cite

PFKFB3 Küçük Molekül İnhibitörü KAN0438757'nin Glioblastoma Hücre Hatlarında Hücre Migrasyonu ve N-kadherin Proteininin Ekspresyon Düzeyi Üzerine Etkilerinin Araştırılması

Year 2024, , 47 - 53, 26.03.2024
https://doi.org/10.46810/tdfd.1385118

Abstract

Tümör hücrelerinde enerji metabolizmasının yeniden programlanmasının, malign özelliklerle ilişkili epitelyal-mezenkimal geçiş (EMT) programının desteklenmesinde önemli bir rol oynadığı bilinmektedir. Enerji metabolizmasında görev alan PFKFB3 (6-phosphofructose-2-kinase/fructose-2,6-bisphosphatase 3), glioblastoma dahil olmak üzere çoklu tümör tipi ilerlemesinde rol oynayan önemli bir glikolitik aktivatördür. PFKFB3, EMT ile ilişkili proteinlerin ekspresyonunu modüle ederek tümör hücrelerinde EMT programını etkileyebilmektedir. EMT sırasında glioblastoma hücreleri, artan hücre hareketliliği, istilacılık ve tedaviye direnç ile ilişkili bir mezenkimal fenotip kazanmaktadır. Glioblastoma hücrelerinde PFKFB3'ün inhibisyonu, EMT'yi hedeflemek ve kanser ilerlemesini engellemek için potansiyel bir terapötik strateji olarak görülmektedir. PFKFB3 inhibitörleri, PFKFB3'ün aktivitesini bloke edebilen ve dolayısıyla kanser hücrelerinde glikoliz sürecini inhibe edebilen bileşiklerdir. KAN0438757, PFKFB3'ün yeni ve seçici bir inhibitörüdür. KAN0438757'nin hem in vitro hem de in vivo olarak çeşitli kanser modellerinde anti-tümör etkilerine sahip olduğu gösterilmiştir. Yeni inhibitörün glioblastoma kanseri hücre hatları U373 ve U251'de hücrelerin canlılığı, hücre göçü ve hücre ölümü üzerindeki etkisi, WST-1 hücre canlılığı, AO/EtBr boyama western blotlama ve yara iyileştirme testleri ile araştırıldı. Elde ettiğimiz sonuçlarda, Glioblastoma hücrelerinde, KAN0438757 tedavisinden sonra hücre canlılığının azaldığı ve doza bağlı apoptotik morfolojik değişiklikler görüldü. Ayrıca EMT ilişkili protein N-cadherin proteininin düzeyinin azaldığı ve hücre göçününde baskılandığını gözlemledik. Sonuç olarak, KAN0438757'nin glioblastomada, EMT programını tersine çevirerek ve kanser hücrelerinin apoptotik morfolojik değişikliklere yol açarak anti-tümör etkilerine sahip olabileceğini düşündürmektedir.

References

  • Weller M. et al. “Glioma”. Nat. Rev. Dis. Prim. 2015; 1.
  • Chen R, Smith-Cohn M, Cohen AL, Colman H. Glioma Subclassifications and Their Clinical Significance. Neurotherapeutics.2017;14(2):284–297.
  • Bush NAO, Chang SM, Berger MS. “Current and future strategies for treatment of glioma.” Neurosurg. Rev. 2017;40(1):1–14.
  • Bartrons RA, Rodríguez-García, Simon-Molas H, Castaño E, Manzano A, Navarro-Sabaté À. “The potential utility of PFKFB3 as a therapeutic target.” Expert Opinion on Therapeutic Targets. 2018;22(8):659–674.
  • Minchenko OH, Ogura T, Opentanova IL, Minchenko DO, Esumi H. Splice isoform of 6-phosphofructo-2-kinase/ fructose-2,6-bisphosphatase-4: Expression and hypoxic regulation. Mol. Cell. Biochem.2005;280(1–2):227–234.
  • Yalcin A, Telang S, Clem B, Chesney J. Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer.” Exp. Mol. Pathol. 2009;86(3):174–179.
  • Bartrons R, et al. Fructose 2, 6-bisphosphate in cancer cell metabolism. Front. Oncol.2018;8(331):1-21.
  • Shi L, Pan H, Liu Z, Xie J, Han W. Roles of PFKFB3 in cancer. Signal Transduct. Target. Ther. 2017;2(1):1–10.
  • Minchenko OH, et al. Single-walled carbon nanotubes affect the expression of the CCND2 gene in human U87 glioma cells. Materwiss. Werksttech. 2016;47(2–3)180–188.
  • Rodríguez-García A, et al. TGF-β1 targets Smad, p38 MAPK, and PI3K/Akt signaling pathways to induce PFKFB3 gene expression and glycolysis in glioblastoma cells. FEBS J. 2017;284(20):3437–3454.
  • Seker-Polat F, Pinarbasi Degirmenci N, Solaroglu I, Bagci-Onder T. Tumor cell infiltration into the brain in glioblastoma: From mechanisms to clinical perspectives. cancers (Basel). 2022;14(2):443.
  • Younis M, Shaikh S, Khawar, Shahzad K. Long non-coding RNA RP5-821D11.7 promotes proliferation, migration, and epithelial-mesenchymal transition in glioma and glioma stem-like cells Open Access. Biomed. Lett. 2023;9:64-74.
  • Loh CY, et al. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: Signaling, therapeutic implications, and challenges. Cells. 2019;8(10):1118.
  • Lei L, et al. A potential oncogenic role for PFKFB3 overexpression in gastric cancer progression. Clin. Transl. Gastroenterol. 2021;12(7):1-10.
  • Zhu Y, et al. Targeting PFKFB3 sensitizes chronic myelogenous leukemia cells to tyrosine kinase inhibitor. Oncogene. May 2018;37(21):2837–2849.
  • Kao GD, Jiang Z, Fernandes AM, Gupta AK, Maity A. Inhibition of phosphatidylinositol-3-OH kinase/Akt signaling impairs DNA repair in glioblastoma cells following ionizing radiation. J. Biol. Chem. 2007;282(29):21206–21212.
  • Zhang J, et al. Dual inhibition of PFKFB3 and VEGF normalizes tumor vasculature, reduces lactate production, and improves chemotherapy in glioblastoma: insights from protein expression profiling and MRI. Theranostics. 2020;10(16):7245–7259.
  • Alvarez R, Mandal D, Chittiboina P. Canonical and non-canonical roles of pfkfb3 in brain tumors. Cells. 2021;10(11):1–24.
  • Gustafsson NMS, et al. Targeting PFKFB3 radiosensitizes cancer cells and suppresses homologous recombination. Nat. Commun. 2018;9(1):1–16.
  • De Oliveira T, et al. Effects of the novel PFKFB3 inhibitor KAN048757 on colorectal cancer cells and its systemic toxicity evaluation in vivo.” Cancers (Basel). 2021;13(5):1–24.
  • Tykhomyrov A, Nedzvetsky V, Shemet S, Ağca CA. Production and characterization of polyclonal antibodies to human recombinant domain B-free antihemophilic factor VIII. Turkish J. Biol. 2017;41(6):857–867.
  • Cory G. Scratch-wound assay. Methods Mol. Biol. 2011;769:25–30.
  • Feoktistova M, Geserick P, Leverkus M. Crystal violet assay for determining viability of cultured cells. Cold Spring Harb. Protoc. 2016;4:343-346.
  • Kasibhatla S, Amarante-Mendes GP, Finucane D, Brunner T, Bossy-Wetzel E, Green DR. Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. Cold Spring Harb. Protoc. 2006;3:pdb-prot4493.
  • Agca CA, Kırıcı M, Nedzvetsky VS, Gundogdu R, Tykhomyrov AA. The effect of TIGAR knockdown on apoptotic and epithelial-mesenchymal markers expression in doxorubicin-resistant non-small cell lung cancer A549 cell lines. Chem. Biodivers. 2020;17(9):e2000441.
  • Klein CA. The metastasis cascade. Science (80-. ).2008;1785–1787.
  • Roche J. The epithelial-to-mesenchymal transition in cancer. Cancers. 2018;10(2):52.
  • E. Sánchez-Tilló, et al. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell. Mol. Life Sci. 2012;69:3429–3456.
  • Zheng H, Kang Y.Multilayer control of the EMT master regulators. Oncogene. 2014;33(14):1755–1763.
  • Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci. Signal. 2014;7(344).
  • Marcucci F, Rumio C. Tumor cell glycolysis-at the crossroad of epithelial-mesenchymal transition and autophagy. Cells. 2022;11(6):1041.
  • Son H, Moon A. Epithelial-mesenchymal transition and cell invasion. Toxicol. Res. 2010;26(4):245–252.
  • Altunok TH A. PFKFB3 regulates epithelial-to-mesenchymal transition in tumor cells. Doğu Karadeniz Sağlık Bilim. Derg. 2023;2(1):15–27.
  • Li HM, et al. Blockage of glycolysis by targeting PFKFB3 suppresses tumor growth and metastasis in head and neck squamous cell carcinoma. J. Exp. Clin. Cancer Res. 2017;36(1):1–12.
  • Jia D, et al. Towards decoding the coupled decision-making of metabolism and epithelial-to-mesenchymal transition in cancer. Br. J. Cancer. 2021;124(12):1902–1911.
  • Neal JO, et al. Inhibition of 6-phosphofructo-2-kinase (PFKFB3) suppresses glucose metabolism and the growth of HER2+ breast cancer. Breast Cancer Res. Treat. 2016;160(1):29–40.
  • De Oliveira T, et al. Effects of the novel pfkfb3 inhibitor kan0438757 on colorectal cancer cells and its systemic toxicity evaluation in vivo.” Cancers (Basel). 2021;13(5):1011.
  • Yan S, et al. Necroptosis pathway blockage attenuates PFKFB3 inhibitor-induced cell viability loss and genome instability in colorectal cancer cells. Am. J. Cancer Res. 2021;11(5):2062.
  • Wang C, Qu J, Yan S, Gao Q, Hao S, Zhou D. PFK15 , a PFKFB3 antagonist , inhibits autophagy and proliferation in rhabdomyosarcoma cells. 2018;21:359–367.
  • Pegoraro C, Maczkowiak F, Monsoro-Burq AH. Pfkfb (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) isoforms display a tissue-specific and dynamic expression during Xenopus laevis development. Gene Expression Patterns 2013; 13 (7): 203-211.

Investigation of the Effects of PFKFB3 Small Molecule Inhibitor KAN0438757 on Cell Migration and Expression Level of N-cadherin Protein in Glioblastoma Cell Lines

Year 2024, , 47 - 53, 26.03.2024
https://doi.org/10.46810/tdfd.1385118

Abstract

PFKFB3 (6-phosphofructose-2-kinase/fructose-2,6-bisphosphatase 3) is a enzyme involved in glycolysis, the process by which cells convert glucose into energy. PFKFB3 is known to be overexpressed in many types of cancer, including glioblastoma, a highly aggressive brain tumour. The epithelial-mesenchymal transition (EMT) is a biological mechanism linked to cancer growth and enhanced invasion and metastasis. Inhibition of PFKFB3 in glioblastoma cells is seen as a potential therapeutic strategy to target EMT and inhibit cancer progression. Various small molecule PFKFB3 inhibitors have been created and tested in preclinical trials. The purpose of this study is to look into the possible effect of KAN0438757, a very efficient PFKB3 inhibitor, on glioblastoma cells. KAN0438757's impact on viability of cells, cell migration and cell death in glioblastoma cancer cell lines U373 and U251 were investigated by WST-1 Cell viability, AO/EtBr staining western blotting and wound healing-cell migration assays. Glioblastoma cells showed decreased cell viability and dose-dependent apoptotic morphological changes after KAN0438757 treatment. In addition, it was determined that N-cadherin protein level decreased and cell migration was suppressed. In conclusion, KAN0438757, a PFKFB3 inhibitor, can be considered as a valid approach to target cell death and EMT in glioblastoma cancer cell lines.

Supporting Institution

TÜBİTAK

Thanks

This research was funded by TÜBİTAK

References

  • Weller M. et al. “Glioma”. Nat. Rev. Dis. Prim. 2015; 1.
  • Chen R, Smith-Cohn M, Cohen AL, Colman H. Glioma Subclassifications and Their Clinical Significance. Neurotherapeutics.2017;14(2):284–297.
  • Bush NAO, Chang SM, Berger MS. “Current and future strategies for treatment of glioma.” Neurosurg. Rev. 2017;40(1):1–14.
  • Bartrons RA, Rodríguez-García, Simon-Molas H, Castaño E, Manzano A, Navarro-Sabaté À. “The potential utility of PFKFB3 as a therapeutic target.” Expert Opinion on Therapeutic Targets. 2018;22(8):659–674.
  • Minchenko OH, Ogura T, Opentanova IL, Minchenko DO, Esumi H. Splice isoform of 6-phosphofructo-2-kinase/ fructose-2,6-bisphosphatase-4: Expression and hypoxic regulation. Mol. Cell. Biochem.2005;280(1–2):227–234.
  • Yalcin A, Telang S, Clem B, Chesney J. Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer.” Exp. Mol. Pathol. 2009;86(3):174–179.
  • Bartrons R, et al. Fructose 2, 6-bisphosphate in cancer cell metabolism. Front. Oncol.2018;8(331):1-21.
  • Shi L, Pan H, Liu Z, Xie J, Han W. Roles of PFKFB3 in cancer. Signal Transduct. Target. Ther. 2017;2(1):1–10.
  • Minchenko OH, et al. Single-walled carbon nanotubes affect the expression of the CCND2 gene in human U87 glioma cells. Materwiss. Werksttech. 2016;47(2–3)180–188.
  • Rodríguez-García A, et al. TGF-β1 targets Smad, p38 MAPK, and PI3K/Akt signaling pathways to induce PFKFB3 gene expression and glycolysis in glioblastoma cells. FEBS J. 2017;284(20):3437–3454.
  • Seker-Polat F, Pinarbasi Degirmenci N, Solaroglu I, Bagci-Onder T. Tumor cell infiltration into the brain in glioblastoma: From mechanisms to clinical perspectives. cancers (Basel). 2022;14(2):443.
  • Younis M, Shaikh S, Khawar, Shahzad K. Long non-coding RNA RP5-821D11.7 promotes proliferation, migration, and epithelial-mesenchymal transition in glioma and glioma stem-like cells Open Access. Biomed. Lett. 2023;9:64-74.
  • Loh CY, et al. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: Signaling, therapeutic implications, and challenges. Cells. 2019;8(10):1118.
  • Lei L, et al. A potential oncogenic role for PFKFB3 overexpression in gastric cancer progression. Clin. Transl. Gastroenterol. 2021;12(7):1-10.
  • Zhu Y, et al. Targeting PFKFB3 sensitizes chronic myelogenous leukemia cells to tyrosine kinase inhibitor. Oncogene. May 2018;37(21):2837–2849.
  • Kao GD, Jiang Z, Fernandes AM, Gupta AK, Maity A. Inhibition of phosphatidylinositol-3-OH kinase/Akt signaling impairs DNA repair in glioblastoma cells following ionizing radiation. J. Biol. Chem. 2007;282(29):21206–21212.
  • Zhang J, et al. Dual inhibition of PFKFB3 and VEGF normalizes tumor vasculature, reduces lactate production, and improves chemotherapy in glioblastoma: insights from protein expression profiling and MRI. Theranostics. 2020;10(16):7245–7259.
  • Alvarez R, Mandal D, Chittiboina P. Canonical and non-canonical roles of pfkfb3 in brain tumors. Cells. 2021;10(11):1–24.
  • Gustafsson NMS, et al. Targeting PFKFB3 radiosensitizes cancer cells and suppresses homologous recombination. Nat. Commun. 2018;9(1):1–16.
  • De Oliveira T, et al. Effects of the novel PFKFB3 inhibitor KAN048757 on colorectal cancer cells and its systemic toxicity evaluation in vivo.” Cancers (Basel). 2021;13(5):1–24.
  • Tykhomyrov A, Nedzvetsky V, Shemet S, Ağca CA. Production and characterization of polyclonal antibodies to human recombinant domain B-free antihemophilic factor VIII. Turkish J. Biol. 2017;41(6):857–867.
  • Cory G. Scratch-wound assay. Methods Mol. Biol. 2011;769:25–30.
  • Feoktistova M, Geserick P, Leverkus M. Crystal violet assay for determining viability of cultured cells. Cold Spring Harb. Protoc. 2016;4:343-346.
  • Kasibhatla S, Amarante-Mendes GP, Finucane D, Brunner T, Bossy-Wetzel E, Green DR. Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. Cold Spring Harb. Protoc. 2006;3:pdb-prot4493.
  • Agca CA, Kırıcı M, Nedzvetsky VS, Gundogdu R, Tykhomyrov AA. The effect of TIGAR knockdown on apoptotic and epithelial-mesenchymal markers expression in doxorubicin-resistant non-small cell lung cancer A549 cell lines. Chem. Biodivers. 2020;17(9):e2000441.
  • Klein CA. The metastasis cascade. Science (80-. ).2008;1785–1787.
  • Roche J. The epithelial-to-mesenchymal transition in cancer. Cancers. 2018;10(2):52.
  • E. Sánchez-Tilló, et al. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell. Mol. Life Sci. 2012;69:3429–3456.
  • Zheng H, Kang Y.Multilayer control of the EMT master regulators. Oncogene. 2014;33(14):1755–1763.
  • Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci. Signal. 2014;7(344).
  • Marcucci F, Rumio C. Tumor cell glycolysis-at the crossroad of epithelial-mesenchymal transition and autophagy. Cells. 2022;11(6):1041.
  • Son H, Moon A. Epithelial-mesenchymal transition and cell invasion. Toxicol. Res. 2010;26(4):245–252.
  • Altunok TH A. PFKFB3 regulates epithelial-to-mesenchymal transition in tumor cells. Doğu Karadeniz Sağlık Bilim. Derg. 2023;2(1):15–27.
  • Li HM, et al. Blockage of glycolysis by targeting PFKFB3 suppresses tumor growth and metastasis in head and neck squamous cell carcinoma. J. Exp. Clin. Cancer Res. 2017;36(1):1–12.
  • Jia D, et al. Towards decoding the coupled decision-making of metabolism and epithelial-to-mesenchymal transition in cancer. Br. J. Cancer. 2021;124(12):1902–1911.
  • Neal JO, et al. Inhibition of 6-phosphofructo-2-kinase (PFKFB3) suppresses glucose metabolism and the growth of HER2+ breast cancer. Breast Cancer Res. Treat. 2016;160(1):29–40.
  • De Oliveira T, et al. Effects of the novel pfkfb3 inhibitor kan0438757 on colorectal cancer cells and its systemic toxicity evaluation in vivo.” Cancers (Basel). 2021;13(5):1011.
  • Yan S, et al. Necroptosis pathway blockage attenuates PFKFB3 inhibitor-induced cell viability loss and genome instability in colorectal cancer cells. Am. J. Cancer Res. 2021;11(5):2062.
  • Wang C, Qu J, Yan S, Gao Q, Hao S, Zhou D. PFK15 , a PFKFB3 antagonist , inhibits autophagy and proliferation in rhabdomyosarcoma cells. 2018;21:359–367.
  • Pegoraro C, Maczkowiak F, Monsoro-Burq AH. Pfkfb (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) isoforms display a tissue-specific and dynamic expression during Xenopus laevis development. Gene Expression Patterns 2013; 13 (7): 203-211.
There are 40 citations in total.

Details

Primary Language English
Subjects Cell Development, Proliferation and Death
Journal Section Articles
Authors

Seher Saruhan 0000-0003-1641-8519

Deniz Özdemir 0000-0001-7659-742X

Remziye Safa 0009-0002-0392-3196

Can Ali Agca 0000-0002-0244-3767

Early Pub Date March 26, 2024
Publication Date March 26, 2024
Submission Date November 2, 2023
Acceptance Date February 10, 2024
Published in Issue Year 2024

Cite

APA Saruhan, S., Özdemir, D., Safa, R., Agca, C. A. (2024). Investigation of the Effects of PFKFB3 Small Molecule Inhibitor KAN0438757 on Cell Migration and Expression Level of N-cadherin Protein in Glioblastoma Cell Lines. Türk Doğa Ve Fen Dergisi, 13(1), 47-53. https://doi.org/10.46810/tdfd.1385118
AMA Saruhan S, Özdemir D, Safa R, Agca CA. Investigation of the Effects of PFKFB3 Small Molecule Inhibitor KAN0438757 on Cell Migration and Expression Level of N-cadherin Protein in Glioblastoma Cell Lines. TDFD. March 2024;13(1):47-53. doi:10.46810/tdfd.1385118
Chicago Saruhan, Seher, Deniz Özdemir, Remziye Safa, and Can Ali Agca. “Investigation of the Effects of PFKFB3 Small Molecule Inhibitor KAN0438757 on Cell Migration and Expression Level of N-Cadherin Protein in Glioblastoma Cell Lines”. Türk Doğa Ve Fen Dergisi 13, no. 1 (March 2024): 47-53. https://doi.org/10.46810/tdfd.1385118.
EndNote Saruhan S, Özdemir D, Safa R, Agca CA (March 1, 2024) Investigation of the Effects of PFKFB3 Small Molecule Inhibitor KAN0438757 on Cell Migration and Expression Level of N-cadherin Protein in Glioblastoma Cell Lines. Türk Doğa ve Fen Dergisi 13 1 47–53.
IEEE S. Saruhan, D. Özdemir, R. Safa, and C. A. Agca, “Investigation of the Effects of PFKFB3 Small Molecule Inhibitor KAN0438757 on Cell Migration and Expression Level of N-cadherin Protein in Glioblastoma Cell Lines”, TDFD, vol. 13, no. 1, pp. 47–53, 2024, doi: 10.46810/tdfd.1385118.
ISNAD Saruhan, Seher et al. “Investigation of the Effects of PFKFB3 Small Molecule Inhibitor KAN0438757 on Cell Migration and Expression Level of N-Cadherin Protein in Glioblastoma Cell Lines”. Türk Doğa ve Fen Dergisi 13/1 (March 2024), 47-53. https://doi.org/10.46810/tdfd.1385118.
JAMA Saruhan S, Özdemir D, Safa R, Agca CA. Investigation of the Effects of PFKFB3 Small Molecule Inhibitor KAN0438757 on Cell Migration and Expression Level of N-cadherin Protein in Glioblastoma Cell Lines. TDFD. 2024;13:47–53.
MLA Saruhan, Seher et al. “Investigation of the Effects of PFKFB3 Small Molecule Inhibitor KAN0438757 on Cell Migration and Expression Level of N-Cadherin Protein in Glioblastoma Cell Lines”. Türk Doğa Ve Fen Dergisi, vol. 13, no. 1, 2024, pp. 47-53, doi:10.46810/tdfd.1385118.
Vancouver Saruhan S, Özdemir D, Safa R, Agca CA. Investigation of the Effects of PFKFB3 Small Molecule Inhibitor KAN0438757 on Cell Migration and Expression Level of N-cadherin Protein in Glioblastoma Cell Lines. TDFD. 2024;13(1):47-53.