Research Article
BibTex RIS Cite

Deep Learning Approaches and Motor Current Signature Analysis in Detection of Broken Rotor Bar Faults

Year 2024, , 1 - 7, 26.09.2024
https://doi.org/10.46810/tdfd.1487442

Abstract

Induction motors are preferred in industrial applications due to their simple and robust structure, cost-effectiveness, self-starting capability, high efficiency, and reliability. However, faults like broken rotor bars occasionally encountered in these motors can lead to reduced performance and increased operating costs. Deep learning models are increasingly being used for the early detection of such faults. These models can recognize complex patterns in motor data to identify potential faults in advance, allowing for timely intervention, extending motor life, and ensuring production continuity. In this study, the diagnosis of broken rotor bars in induction motors was performed using four different deep learning models. Binary classification was conducted based on images obtained from current signals using a pre-existing dataset. The study achieved over 90% accuracy, thereby proving the effectiveness of deep learning models on induction motors.

References

  • Pelly, Brian R. "Thyristor phase-controlled converters and cycloconverters: operation, control, and performance." (No Title) (1971).
  • Hughes, Austin, and Bill Drury. Electric motors and drives: fundamentals, types and applications. Newnes, 2019.
  • Nasar, Syed A., and Ion Boldea. "The induction machine handbook." Electric Power Engineering Series, Boca raton, Florida, USA: CRC Press LLC (2002).
  • Sen, Paresh Chandra. Principles of Electric Machines and Power Electronics, International Adaptation. John Wiley & Sons, 2021.
  • Pillay, Pragasen, and Ramu Krishnan. "Modeling, simulation, and analysis of permanent-magnet motor drives. I. The permanent-magnet synchronous motor drive." IEEE Transactions on industry applications 25.2 (1989): 265-273.
  • Singh, Arvind, et al. "A review of induction motor fault modeling." Electric Power Systems Research 133 (2016): 191-197.
  • Jing, Luyang, et al. "A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox." Measurement 111 (2017): 1-10.
  • Lou, Xinsheng, and Kenneth A. Loparo. "Bearing fault diagnosis based on wavelet transform and fuzzy inference." Mechanical systems and signal processing 18.5 (2004): 1077-1095.
  • Zhu, Huibin, et al. "Bearing fault feature extraction and fault diagnosis method based on feature fusion." Sensors 21.7 (2021): 2524.
  • Banerjee, Tribeni Prasad, and Swagatam Das. "Multi-sensor data fusion using support vector machine for motor fault detection." Information Sciences 217 (2012): 96-107.
  • Bera, Arka, Arindam Dutta, and Ashis K. Dhara. "Deep learning based fault classification algorithm for roller bearings using time-frequency localized features." 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). IEEE, 2021.
  • Lu, Chen, Zhenya Wang, and Bo Zhou. "Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification." Advanced Engineering Informatics 32 (2017): 139-151.
  • Janssens, Olivier, et al. "Convolutional neural network based fault detection for rotating machinery." Journal of Sound and Vibration 377 (2016): 331-345.
  • Shen, Sheng, et al. "A physics-informed deep learning approach for bearing fault detection." Engineering Applications of Artificial Intelligence 103 (2021): 104295.
  • Hu, Jie, and Sier Deng. "Rolling bearing fault diagnosis based on wireless sensor network data fusion." Computer communications 181 (2022): 404-411.
  • Oh, Jin Woo, and Jongpil Jeong. "Data augmentation for bearing fault detection with a light weight CNN." Procedia Computer Science 175 (2020): 72-79.
  • Chen, ZhiQiang, Chuan Li, and René-Vinicio Sanchez. "Gearbox fault identification and classification with convolutional neural networks." Shock and Vibration 2015 (2015).
  • Liu, Shuangjie, et al. "Bearing fault diagnosis based on improved convolutional deep belief network." Applied Sciences 10.18 (2020): 6359.
  • Sun, Wenjun, et al. "A sparse auto-encoder-based deep neural network approach for induction motor faults classification." Measurement 89 (2016): 171-178.
  • Kumar, Dileep, et al. "Towards soft real-time fault diagnosis for edge devices in industrial IoT using deep domain adaptation training strategy." Journal of Parallel and Distributed Computing 160 (2022): 90-99.
  • Kao, I-Hsi, et al. "Analysis of permanent magnet synchronous motor fault diagnosis based on learning." IEEE Transactions on Instrumentation and Measurement 68.2 (2018): 310-324.
  • Hoang, Duy Tang, and Hee Jun Kang. "A motor current signal-based bearing fault diagnosis using deep learning and information fusion." IEEE Transactions on Instrumentation and Measurement 69.6 (2019): 3325-3333.
  • Aydin, Ilhan, Mehmet Karakose, and Erhan Akin. "An approach for automated fault diagnosis based on a fuzzy decision tree and boundary analysis of a reconstructed phase space." ISA transactions 53.2 (2014): 220-229.
  • Ince, Turker, et al. "Real-time motor fault detection by 1-D convolutional neural networks." IEEE Transactions on Industrial Electronics 63.11 (2016): 7067-7075.
  • Jia, Feng, et al. "Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data." Mechanical systems and signal processing 72 (2016): 303-315.
  • Bonnett, Austin H. "Root cause AC motor failure analysis with a focus on shaft failures." IEEE transactions on industry applications 36.5 (2000): 1435-1448.
  • Thomson, William T., and Ronald J. Gilmore. "Motor Current Signature Analysis To Detect Faults In Induction Motor Drives-Fundamentals, Data Interpretation, And Industrial Case Histories." Proceedings of the 32nd turbomachinery Symposium. Texas A&M University. Turbomachinery Laboratories, 2003.
  • Akkurt, İbrahim, and Hayri Arabacı. "Sürücüden Beslenen Asenkron Motorlarda Rulman Arızalarının Stator Akımı Kullanarak Tespiti." Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi 1.2 (2019): 122-134.
  • Kaya, Kadir, and Abdurrahman Ünsal. "Yapay sinir ağlarıyla asenkron motor çoklu arızalarının tespiti ve sınıflandırılması." Politeknik Dergisi 25.4 (2022): 1687-1699.
  • Treml, Aline Elly, et al. "Experimental database for detecting and diagnosing rotor broken bar in a three-phase induction motor." IEEE DataPort (2020).
  • Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint arXiv:2010.11929 (2020).
  • Khan, Salman, et al. "Transformers in vision: A survey." ACM computing surveys (CSUR) 54.10s (2022): 1-41.
  • Liu, Hanxiao, et al. "Pay attention to mlps." Advances in neural information processing systems 34 (2021): 9204-9215.
  • Gorishniy, Yury, et al. "Revisiting deep learning models for tabular data." Advances in Neural Information Processing Systems 34 (2021): 18932-18943.
  • Tolstikhin, Ilya O., et al. "Mlp-mixer: An all-mlp architecture for vision." Advances in neural information processing systems 34 (2021): 24261-24272.
  • Melas-Kyriazi, Luke. "Do you even need attention? a stack of feed-forward layers does surprisingly well on imagenet." arXiv preprint arXiv:2105.02723 (2021).
  • Hou, Qibin, et al. "Vision permutator: A permutable mlp-like architecture for visual recognition." IEEE transactions on pattern analysis and machine intelligence 45.1 (2022): 1328-1334.
  • Lee-Thorp, James, et al. "Fnet: Mixing tokens with fourier transforms." arXiv preprint arXiv:2105.03824 (2021).
  • Dişli, Fırat, Mehmet Gedikpınar, and Abdulkadir Sengur. "Deep transfer learning-based broken rotor fault diagnosis for Induction Motors." Turkish Journal of Science and Technology 18.1 (2023): 275-290.

Kırık Rotor Çubuğu Arızalarının Belirlenmesinde Derin Öğrenme Yaklaşımları ve Motor Akım İmza Analizi

Year 2024, , 1 - 7, 26.09.2024
https://doi.org/10.46810/tdfd.1487442

Abstract

Asenkron motorlar, endüstriyel uygulamalarda sağladıkları basit ve sağlam yapı, maliyet etkinliği, kendiliğinden başlama kabiliyeti, yüksek verimlilik ve güvenilirlik gibi avantajlarla tercih edilir. Ancak, bu motorlarda zaman zaman karşılaşılan kırık rotor çubuğu gibi arızalar, performans düşüklüğüne ve işletme maliyetlerinin artmasına neden olabilir. Bu tür arızaların erken teşhisi için derin öğrenme modelleri giderek daha fazla kullanılmaktadır. Bu modeller, motor verilerinden karmaşık desenleri tanıyarak potansiyel arızaları önceden belirleyebilir, böylece zamanında müdahale ile motor ömrü uzatılabilir ve üretim sürekliliği sağlanabilir. Bu çalışma dört farklı derin öğrenme modeli kullanılarak asenkron motorlardaki kırık rotor çubuğu teşhisi gerçekleştirilmiştir. Hazır veri seti kullanılan çalışmada akım sinyalleri ile elde edilen görüntüler üzerinden ikili sınıflandırma yapılmıştır. Yapılan çalışma sonucunda %90 üzerinde başarım sağlanmıştır. Böylece derin öğrenme modellerinin asenkron motorlar üzerinde etkinliği kanıtlanmıştır.

References

  • Pelly, Brian R. "Thyristor phase-controlled converters and cycloconverters: operation, control, and performance." (No Title) (1971).
  • Hughes, Austin, and Bill Drury. Electric motors and drives: fundamentals, types and applications. Newnes, 2019.
  • Nasar, Syed A., and Ion Boldea. "The induction machine handbook." Electric Power Engineering Series, Boca raton, Florida, USA: CRC Press LLC (2002).
  • Sen, Paresh Chandra. Principles of Electric Machines and Power Electronics, International Adaptation. John Wiley & Sons, 2021.
  • Pillay, Pragasen, and Ramu Krishnan. "Modeling, simulation, and analysis of permanent-magnet motor drives. I. The permanent-magnet synchronous motor drive." IEEE Transactions on industry applications 25.2 (1989): 265-273.
  • Singh, Arvind, et al. "A review of induction motor fault modeling." Electric Power Systems Research 133 (2016): 191-197.
  • Jing, Luyang, et al. "A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox." Measurement 111 (2017): 1-10.
  • Lou, Xinsheng, and Kenneth A. Loparo. "Bearing fault diagnosis based on wavelet transform and fuzzy inference." Mechanical systems and signal processing 18.5 (2004): 1077-1095.
  • Zhu, Huibin, et al. "Bearing fault feature extraction and fault diagnosis method based on feature fusion." Sensors 21.7 (2021): 2524.
  • Banerjee, Tribeni Prasad, and Swagatam Das. "Multi-sensor data fusion using support vector machine for motor fault detection." Information Sciences 217 (2012): 96-107.
  • Bera, Arka, Arindam Dutta, and Ashis K. Dhara. "Deep learning based fault classification algorithm for roller bearings using time-frequency localized features." 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). IEEE, 2021.
  • Lu, Chen, Zhenya Wang, and Bo Zhou. "Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification." Advanced Engineering Informatics 32 (2017): 139-151.
  • Janssens, Olivier, et al. "Convolutional neural network based fault detection for rotating machinery." Journal of Sound and Vibration 377 (2016): 331-345.
  • Shen, Sheng, et al. "A physics-informed deep learning approach for bearing fault detection." Engineering Applications of Artificial Intelligence 103 (2021): 104295.
  • Hu, Jie, and Sier Deng. "Rolling bearing fault diagnosis based on wireless sensor network data fusion." Computer communications 181 (2022): 404-411.
  • Oh, Jin Woo, and Jongpil Jeong. "Data augmentation for bearing fault detection with a light weight CNN." Procedia Computer Science 175 (2020): 72-79.
  • Chen, ZhiQiang, Chuan Li, and René-Vinicio Sanchez. "Gearbox fault identification and classification with convolutional neural networks." Shock and Vibration 2015 (2015).
  • Liu, Shuangjie, et al. "Bearing fault diagnosis based on improved convolutional deep belief network." Applied Sciences 10.18 (2020): 6359.
  • Sun, Wenjun, et al. "A sparse auto-encoder-based deep neural network approach for induction motor faults classification." Measurement 89 (2016): 171-178.
  • Kumar, Dileep, et al. "Towards soft real-time fault diagnosis for edge devices in industrial IoT using deep domain adaptation training strategy." Journal of Parallel and Distributed Computing 160 (2022): 90-99.
  • Kao, I-Hsi, et al. "Analysis of permanent magnet synchronous motor fault diagnosis based on learning." IEEE Transactions on Instrumentation and Measurement 68.2 (2018): 310-324.
  • Hoang, Duy Tang, and Hee Jun Kang. "A motor current signal-based bearing fault diagnosis using deep learning and information fusion." IEEE Transactions on Instrumentation and Measurement 69.6 (2019): 3325-3333.
  • Aydin, Ilhan, Mehmet Karakose, and Erhan Akin. "An approach for automated fault diagnosis based on a fuzzy decision tree and boundary analysis of a reconstructed phase space." ISA transactions 53.2 (2014): 220-229.
  • Ince, Turker, et al. "Real-time motor fault detection by 1-D convolutional neural networks." IEEE Transactions on Industrial Electronics 63.11 (2016): 7067-7075.
  • Jia, Feng, et al. "Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data." Mechanical systems and signal processing 72 (2016): 303-315.
  • Bonnett, Austin H. "Root cause AC motor failure analysis with a focus on shaft failures." IEEE transactions on industry applications 36.5 (2000): 1435-1448.
  • Thomson, William T., and Ronald J. Gilmore. "Motor Current Signature Analysis To Detect Faults In Induction Motor Drives-Fundamentals, Data Interpretation, And Industrial Case Histories." Proceedings of the 32nd turbomachinery Symposium. Texas A&M University. Turbomachinery Laboratories, 2003.
  • Akkurt, İbrahim, and Hayri Arabacı. "Sürücüden Beslenen Asenkron Motorlarda Rulman Arızalarının Stator Akımı Kullanarak Tespiti." Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi 1.2 (2019): 122-134.
  • Kaya, Kadir, and Abdurrahman Ünsal. "Yapay sinir ağlarıyla asenkron motor çoklu arızalarının tespiti ve sınıflandırılması." Politeknik Dergisi 25.4 (2022): 1687-1699.
  • Treml, Aline Elly, et al. "Experimental database for detecting and diagnosing rotor broken bar in a three-phase induction motor." IEEE DataPort (2020).
  • Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint arXiv:2010.11929 (2020).
  • Khan, Salman, et al. "Transformers in vision: A survey." ACM computing surveys (CSUR) 54.10s (2022): 1-41.
  • Liu, Hanxiao, et al. "Pay attention to mlps." Advances in neural information processing systems 34 (2021): 9204-9215.
  • Gorishniy, Yury, et al. "Revisiting deep learning models for tabular data." Advances in Neural Information Processing Systems 34 (2021): 18932-18943.
  • Tolstikhin, Ilya O., et al. "Mlp-mixer: An all-mlp architecture for vision." Advances in neural information processing systems 34 (2021): 24261-24272.
  • Melas-Kyriazi, Luke. "Do you even need attention? a stack of feed-forward layers does surprisingly well on imagenet." arXiv preprint arXiv:2105.02723 (2021).
  • Hou, Qibin, et al. "Vision permutator: A permutable mlp-like architecture for visual recognition." IEEE transactions on pattern analysis and machine intelligence 45.1 (2022): 1328-1334.
  • Lee-Thorp, James, et al. "Fnet: Mixing tokens with fourier transforms." arXiv preprint arXiv:2105.03824 (2021).
  • Dişli, Fırat, Mehmet Gedikpınar, and Abdulkadir Sengur. "Deep transfer learning-based broken rotor fault diagnosis for Induction Motors." Turkish Journal of Science and Technology 18.1 (2023): 275-290.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Electrical Machines and Drives
Journal Section Articles
Authors

Özgür Aydın 0000-0001-8130-277X

Erhan Akın 0000-0001-6476-9255

Publication Date September 26, 2024
Submission Date May 21, 2024
Acceptance Date June 23, 2024
Published in Issue Year 2024

Cite

APA Aydın, Ö., & Akın, E. (2024). Kırık Rotor Çubuğu Arızalarının Belirlenmesinde Derin Öğrenme Yaklaşımları ve Motor Akım İmza Analizi. Türk Doğa Ve Fen Dergisi, 13(3), 1-7. https://doi.org/10.46810/tdfd.1487442
AMA Aydın Ö, Akın E. Kırık Rotor Çubuğu Arızalarının Belirlenmesinde Derin Öğrenme Yaklaşımları ve Motor Akım İmza Analizi. TDFD. September 2024;13(3):1-7. doi:10.46810/tdfd.1487442
Chicago Aydın, Özgür, and Erhan Akın. “Kırık Rotor Çubuğu Arızalarının Belirlenmesinde Derin Öğrenme Yaklaşımları Ve Motor Akım İmza Analizi”. Türk Doğa Ve Fen Dergisi 13, no. 3 (September 2024): 1-7. https://doi.org/10.46810/tdfd.1487442.
EndNote Aydın Ö, Akın E (September 1, 2024) Kırık Rotor Çubuğu Arızalarının Belirlenmesinde Derin Öğrenme Yaklaşımları ve Motor Akım İmza Analizi. Türk Doğa ve Fen Dergisi 13 3 1–7.
IEEE Ö. Aydın and E. Akın, “Kırık Rotor Çubuğu Arızalarının Belirlenmesinde Derin Öğrenme Yaklaşımları ve Motor Akım İmza Analizi”, TDFD, vol. 13, no. 3, pp. 1–7, 2024, doi: 10.46810/tdfd.1487442.
ISNAD Aydın, Özgür - Akın, Erhan. “Kırık Rotor Çubuğu Arızalarının Belirlenmesinde Derin Öğrenme Yaklaşımları Ve Motor Akım İmza Analizi”. Türk Doğa ve Fen Dergisi 13/3 (September 2024), 1-7. https://doi.org/10.46810/tdfd.1487442.
JAMA Aydın Ö, Akın E. Kırık Rotor Çubuğu Arızalarının Belirlenmesinde Derin Öğrenme Yaklaşımları ve Motor Akım İmza Analizi. TDFD. 2024;13:1–7.
MLA Aydın, Özgür and Erhan Akın. “Kırık Rotor Çubuğu Arızalarının Belirlenmesinde Derin Öğrenme Yaklaşımları Ve Motor Akım İmza Analizi”. Türk Doğa Ve Fen Dergisi, vol. 13, no. 3, 2024, pp. 1-7, doi:10.46810/tdfd.1487442.
Vancouver Aydın Ö, Akın E. Kırık Rotor Çubuğu Arızalarının Belirlenmesinde Derin Öğrenme Yaklaşımları ve Motor Akım İmza Analizi. TDFD. 2024;13(3):1-7.