Research Article
BibTex RIS Cite

İnce Film Organik Fotovoltaikler İçin Alana Bağlı Yük Toplama Modeli

Year 2020, , 135 - 140, 23.10.2020
https://doi.org/10.46810/tdfd.732811

Abstract

Bu çalışmada, bir bulk heteroeklem fotovoltaik cihaz içinde optik kaviteye bağlı yük taşıyıcı üretimini ve homojen olmayan elektrik alan dağılımını gözönünde bulunduran birleştirilmiş bir yük toplama modeli geliştirdik. Yük toplama modeli; yük taşıyıcıların mobiliteleri, rekombinasyon ömrü ve yük taşıyıcı türlerin bağlantı genişliği gibi yük taşıyıcı dinamiği ile ilgili deneysel girdilere dayanmaktadır. Optik kavite modları ve alan şiddeti, cihazların ayrı ayrı bileşenlerinin deneysel değişken açılı elipsometri analizi kullanılarak hesaplanmıştır. Modeli değerlendirmek için, istenmeyen doping ve farklı optik kavite modlarının etkisinin altını çizmek için hava ortamında üretilmiş PCDTBT: PC71BM tabanlı geleneksel ve ters organik fotovoltaik mimarileri kullanılmıştır. Modelden simüle edilen harici kuantum verimliliği ve kısa devre akım yoğunluğu profilleri, farklı aktif katman kalınlıkları ve cihaz mimarileri ile yapılan deneysel sonuçlarla karşılaştırılmıştır. Önerilen yük toplama modeli, deney sonuçları ile yüksek derecede korelasyon göstererek diğer organik fotovoltaik cihazlarda da uygulaması için geçerliliğinin altını çizmiştir.

Project Number

217M456

References

  • [1] Brabec CJ, Sariciftci NS, Hummelen JC. Plastic Solar Cells. Adv Funct Mater 2001;11:15–26. https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A.
  • [2] Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, vd. 18% Efficiency organic solar cells. Sci Bull 2020;65:272–5. https://doi.org/10.1016/j.scib.2020.01.001.
  • [3] Kurt H, Jia J, Shigesato Y, Ow-Yang CW. Tuning hole charge collection efficiency in polymer photovoltaics by optimizing the work function of indium tin oxide electrodes with solution-processed LiF nanoparticles. J Mater Sci Mater Electron 2015;26:9205–12. https://doi.org/10.1007/s10854-015-3613-z.
  • [4] Mingebach M, Deibel C, Dyakonov V. Built-in potential and validity of the Mott-Schottky analysis in organic bulk heterojunction solar cells. Phys Rev B - Condens Matter Mater Phys 2011;84:1–4. https://doi.org/10.1103/PhysRevB.84.153201.
  • [5] Deledalle F, Kirchartz T, Vezie MS, Campoy-Quiles M, Shakya Tuladhar P, Nelson J, vd. Understanding the Effect of Unintentional Doping on Transport Optimization and Analysis in Efficient Organic Bulk-Heterojunction Solar Cells. Phys Rev X 2015;5:011032. https://doi.org/10.1103/PhysRevX.5.011032.
  • [6] Nyman M, Dahlström S, Sandberg OJ, Österbacka R. Unintentional Bulk Doping of Polymer-Fullerene Blends from a Thin Interfacial Layer of MoO 3. Adv Energy Mater 2016;6:1600670. https://doi.org/10.1002/aenm.201600670.
  • [7] Kirchartz T, Gong W, Hawks SA, Agostinelli T, MacKenzie RCI, Yang Y, vd. Sensitivity of the Mott–Schottky Analysis in Organic Solar Cells. J Phys Chem C 2012;116:7672–80. https://doi.org/10.1021/jp300397f.
  • [8] Dibb GFA, Muth M-A, Kirchartz T, Engmann S, Hoppe H, Gobsch G, vd. Influence of doping on charge carrier collection in normal and inverted geometry polymer:fullerene solar cells. Sci Rep 2013;3:3335. https://doi.org/10.1038/srep03335.
  • [9] Khabbaz Abkenar S, Tufani A, Ince G, Kurt H, Turak A, Ow-Yang CW. Transfer Printing Gold Nanoparticle Arrays by Tuning the Surface Hydrophilicity of Thermo-Responsive Poly N-isopropylacrylamide (pNIPAAm). Nanoscale 2017. https://doi.org/10.1039/C6NR09396E.
  • [10] Kurt H. Investigating the effects of nanostructured dielectric lithium fluoride and plasmonic gold interlayers in organic photovoltaics, including the use of in-situ impedance spectroscopy. Sabanci University, 2016.
  • [11] Kurt H, Ow-Yang CW. Impedance spectroscopy analysis of the photophysical dynamics due to the nanostructuring of anode interlayers in organic photovoltaics. Phys Status Solidi Appl Mater Sci 2016. https://doi.org/10.1002/pssa.201600314.
  • [12] Li HH. Refractive index of alkali halides and its wavelength and temperature derivatives. J Phys Chem Ref Data 1976;5:329. https://doi.org/10.1063/1.555536.
  • [13] Rakic AD, Djurišic AB, Elazar JM, Majewski ML. Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices. Appl Opt 1998;37:5271. https://doi.org/10.1364/AO.37.005271.
  • [14] Kurt H, Alpaslan E, Yildiz B, Taralp A, Ow-Yang CW. Conformation-mediated Förster resonance energy transfer (FRET) in blue-emitting polyvinylpyrrolidone (PVP)-passivated zinc oxide (ZnO) nanoparticles. J Colloid Interface Sci 2017;488:348–55. https://doi.org/10.1016/j.jcis.2016.11.017.

Field-Dependent Charge Collection Model for Thin Film Organic Photovoltaics

Year 2020, , 135 - 140, 23.10.2020
https://doi.org/10.46810/tdfd.732811

Abstract

In this study, we developed a unified charge collection model using optical cavity dependent charge carrier generation and non-uniform built-in electric field distribution within a bulk heterojunction photovoltaic device. The charge collection model relies on the experimental inputs related to the charge carrier dynamics such as mobilities of charge carriers, recombination lifetime, and junction width of charge carrier species. Optical cavity modes and field strength were calculated using the experimental variable angle ellipsometry analysis of individual components of the devices. In order to evaluate the model, ambient processed PCDTBT:PC71BM based conventional and inverted derive architectures were utilized to underline the effect of unintentional doping and distinct optical cavity modes. The simulated external quantum efficiency and short-circuit current density profiles from the model were compared to the experimental results with differing active layers thicknesses and device architectures. The proposed charge collection model presented a high degree of correlation with the experimental results and underlined its validity for further application on other types of organic photovoltaic devices.

Supporting Institution

TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU

Project Number

217M456

Thanks

Financial support is acknowledged from the Scientific and Technological Research Council of Turkey (TÜBİTAK) for Project No. 217M456. Türkiye Bilimsel ve Teknolojik Araştırma Kurumu'nun 217M456 nolu proje kapsamındaki finansal desteğine teşekkür ederiz.

References

  • [1] Brabec CJ, Sariciftci NS, Hummelen JC. Plastic Solar Cells. Adv Funct Mater 2001;11:15–26. https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A.
  • [2] Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, vd. 18% Efficiency organic solar cells. Sci Bull 2020;65:272–5. https://doi.org/10.1016/j.scib.2020.01.001.
  • [3] Kurt H, Jia J, Shigesato Y, Ow-Yang CW. Tuning hole charge collection efficiency in polymer photovoltaics by optimizing the work function of indium tin oxide electrodes with solution-processed LiF nanoparticles. J Mater Sci Mater Electron 2015;26:9205–12. https://doi.org/10.1007/s10854-015-3613-z.
  • [4] Mingebach M, Deibel C, Dyakonov V. Built-in potential and validity of the Mott-Schottky analysis in organic bulk heterojunction solar cells. Phys Rev B - Condens Matter Mater Phys 2011;84:1–4. https://doi.org/10.1103/PhysRevB.84.153201.
  • [5] Deledalle F, Kirchartz T, Vezie MS, Campoy-Quiles M, Shakya Tuladhar P, Nelson J, vd. Understanding the Effect of Unintentional Doping on Transport Optimization and Analysis in Efficient Organic Bulk-Heterojunction Solar Cells. Phys Rev X 2015;5:011032. https://doi.org/10.1103/PhysRevX.5.011032.
  • [6] Nyman M, Dahlström S, Sandberg OJ, Österbacka R. Unintentional Bulk Doping of Polymer-Fullerene Blends from a Thin Interfacial Layer of MoO 3. Adv Energy Mater 2016;6:1600670. https://doi.org/10.1002/aenm.201600670.
  • [7] Kirchartz T, Gong W, Hawks SA, Agostinelli T, MacKenzie RCI, Yang Y, vd. Sensitivity of the Mott–Schottky Analysis in Organic Solar Cells. J Phys Chem C 2012;116:7672–80. https://doi.org/10.1021/jp300397f.
  • [8] Dibb GFA, Muth M-A, Kirchartz T, Engmann S, Hoppe H, Gobsch G, vd. Influence of doping on charge carrier collection in normal and inverted geometry polymer:fullerene solar cells. Sci Rep 2013;3:3335. https://doi.org/10.1038/srep03335.
  • [9] Khabbaz Abkenar S, Tufani A, Ince G, Kurt H, Turak A, Ow-Yang CW. Transfer Printing Gold Nanoparticle Arrays by Tuning the Surface Hydrophilicity of Thermo-Responsive Poly N-isopropylacrylamide (pNIPAAm). Nanoscale 2017. https://doi.org/10.1039/C6NR09396E.
  • [10] Kurt H. Investigating the effects of nanostructured dielectric lithium fluoride and plasmonic gold interlayers in organic photovoltaics, including the use of in-situ impedance spectroscopy. Sabanci University, 2016.
  • [11] Kurt H, Ow-Yang CW. Impedance spectroscopy analysis of the photophysical dynamics due to the nanostructuring of anode interlayers in organic photovoltaics. Phys Status Solidi Appl Mater Sci 2016. https://doi.org/10.1002/pssa.201600314.
  • [12] Li HH. Refractive index of alkali halides and its wavelength and temperature derivatives. J Phys Chem Ref Data 1976;5:329. https://doi.org/10.1063/1.555536.
  • [13] Rakic AD, Djurišic AB, Elazar JM, Majewski ML. Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices. Appl Opt 1998;37:5271. https://doi.org/10.1364/AO.37.005271.
  • [14] Kurt H, Alpaslan E, Yildiz B, Taralp A, Ow-Yang CW. Conformation-mediated Förster resonance energy transfer (FRET) in blue-emitting polyvinylpyrrolidone (PVP)-passivated zinc oxide (ZnO) nanoparticles. J Colloid Interface Sci 2017;488:348–55. https://doi.org/10.1016/j.jcis.2016.11.017.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Hasan Kurt 0000-0002-1677-644X

Project Number 217M456
Publication Date October 23, 2020
Published in Issue Year 2020

Cite

APA Kurt, H. (2020). Field-Dependent Charge Collection Model for Thin Film Organic Photovoltaics. Türk Doğa Ve Fen Dergisi, 9(Özel Sayı), 135-140. https://doi.org/10.46810/tdfd.732811
AMA Kurt H. Field-Dependent Charge Collection Model for Thin Film Organic Photovoltaics. TDFD. October 2020;9(Özel Sayı):135-140. doi:10.46810/tdfd.732811
Chicago Kurt, Hasan. “Field-Dependent Charge Collection Model for Thin Film Organic Photovoltaics”. Türk Doğa Ve Fen Dergisi 9, no. Özel Sayı (October 2020): 135-40. https://doi.org/10.46810/tdfd.732811.
EndNote Kurt H (October 1, 2020) Field-Dependent Charge Collection Model for Thin Film Organic Photovoltaics. Türk Doğa ve Fen Dergisi 9 Özel Sayı 135–140.
IEEE H. Kurt, “Field-Dependent Charge Collection Model for Thin Film Organic Photovoltaics”, TDFD, vol. 9, no. Özel Sayı, pp. 135–140, 2020, doi: 10.46810/tdfd.732811.
ISNAD Kurt, Hasan. “Field-Dependent Charge Collection Model for Thin Film Organic Photovoltaics”. Türk Doğa ve Fen Dergisi 9/Özel Sayı (October 2020), 135-140. https://doi.org/10.46810/tdfd.732811.
JAMA Kurt H. Field-Dependent Charge Collection Model for Thin Film Organic Photovoltaics. TDFD. 2020;9:135–140.
MLA Kurt, Hasan. “Field-Dependent Charge Collection Model for Thin Film Organic Photovoltaics”. Türk Doğa Ve Fen Dergisi, vol. 9, no. Özel Sayı, 2020, pp. 135-40, doi:10.46810/tdfd.732811.
Vancouver Kurt H. Field-Dependent Charge Collection Model for Thin Film Organic Photovoltaics. TDFD. 2020;9(Özel Sayı):135-40.