Research Article
BibTex RIS Cite

A Study on Antioxidant and Enzyme Inhibitory Properties of Extracts from Different Parts of Asphodeline baytopae (Xanthorhoeaceae)

Year 2021, , 174 - 181, 31.12.2021
https://doi.org/10.46810/tdfd.882790

Abstract

The Asphodeline Reichb. genus has a great interest as a source of drugs and foods. In the present study, we aimed to determine biological activities of different solvent extracts (acetone, methanol and water) from different parts (roots, stems, leaves, and seeds) from Asphodeline baytopiae Tuzlaci. Antioxidant and enzyme inhibitory effects were determined for biological properties. Different antioxidant assays including free radical scavenging (DPPH and ABTS), reducing power (CUPRAC and FRAP), metal chelating and phosphomolybdenum were employed. Enzyme inhibitory effects were investigated aganist cholinesterases (AChE and BChE), tyrosinase, α-amylase and α-glucosidase. In addition, total phenolic and flavonoid contents for each extracts were determined. Stem-acetone extract contained the highest levels of the total phenolics (73.57 mg GAE/g extract) and flavonoids (75.04 mg RE/g extract). Generally, stem extracts exhibited stronger antioxidant abilities when compared with leaves, roots and seeds. In cholinesterases inhbition assays, acetone and methanol extracts displayed inhibitory effects but water extracts were not active. Tyrosinase inhibitory effects varied from 4.83 to 74.64 mg KAE/g extract. α-Amylase and α- glucosidase inhibiton were 0.02-0.77 mmol ACAE/g extract and 3.42-4.65 mmol ACAE/g extract, respectively. The results suggested that A. baytopae could be considered as valuable sources of natural agents in pharmaceutical and food industries.

References

  • Kaiser AB, Zhang N, Der Pluijm WV. Global Prevalence of Type 2 Diabetes over the Next Ten Years (2018-2028). Diabetes. 2018;67(Supplement 1):202-LB.
  • Alzheimer's Association. 2019 Alzheimer's disease facts and figures. Alzheimer's & Dementia. 2019;15(3):321-87.
  • Chen Y, Kirchmair J. Cheminformatics in Natural Product‐Based Drug Discovery. Molecular Informatics. 2020;39(12):2000171.
  • Chávez-Hernández AL, Sánchez-Cruz N, Medina-Franco JL. Fragment Library of Natural Products and Compound Databases for Drug Discovery. Biomolecules. 2020;10(11):1518.
  • Noroozi J, Zare G, Sherafati M, Mahmoodi M, Moser D, Asgarpour Z, et al. Patterns of endemism in Turkey, the meeting point of three global biodiversity hotspots, based on three diverse families of vascular plants. Frontiers in Ecology and Evolution. 2019;7:159.
  • Şenkardeş İ, Bulut G, Doğan A, Tuzlacı E. An Ethnobotanical Analysis on Wild Edible Plants of the Turkish Asteraceae Taxa. Agriculturae Conspectus Scientificus. 2019;84(1):17-28.
  • Sezik E, Yeşilada E, Honda G, Takaishi Y, Takeda Y, Tanaka T. Traditional medicine in Turkey X. Folk medicine in Central Anatolia. Journal of Ethnopharmacology. 2001;75(2):95-115.
  • Güneş S, Savran A, Paksoy MY, Koşar M, Çakılcıoğlu U. Ethnopharmacological survey of medicinal plants in Karaisalı and its surrounding (Adana-Turkey). Journal of Herbal Medicine. 2017;8:68-75.
  • Lazarova I, Zengin G, Gevrenova R, Nedialkov P, Aneva I, Aumeeruddy MZ, et al. A comparative study of UHPLC/Orbitrap MS metabolomics profiles and biological properties of Asphodeline taurica from Bulgaria and Turkey. Journal of Pharmaceutical and Biomedical Analysis. 2019;168:174-80.
  • Melucci D, Locatelli M, Locatelli C, Zappi A, De Laurentiis F, Carradori S, et al. A comparative assessment of biological effects and chemical profile of Italian Asphodeline lutea extracts. Molecules. 2018;23(2):461.
  • Kargıoğlu M, Cenkci S, Serteser A, Evliyaoğlu N, Konuk M, Kök MŞ, et al. An ethnobotanical survey of inner-West Anatolia, Turkey. Human Ecology. 2008;36(5):763-77.
  • Zengin G. A study on in vitro enzyme inhibitory properties of Asphodeline anatolica: New sources of natural inhibitors for public health problems. Industrial Crops and Products. 2016;83:39-43.
  • Locatelli M, Zengin G, Uysal A, Carradori S, De Luca E, Bellagamba G, et al. Multicomponent pattern and biological activities of seven Asphodeline taxa: potential sources of natural-functional ingredients for bioactive formulations. Journal of enzyme inhibition and medicinal chemistry. 2017;32(1):60-7.
  • Zengin G, Locatelli M, Ceylan R, Aktumsek A. Anthraquinone profile, antioxidant and enzyme inhibitory effect of root extracts of eight Asphodeline taxa from Turkey: can Asphodeline roots be considered as a new source of natural compounds? Journal of enzyme inhibition and medicinal chemistry. 2016;31(5):754-9.
  • Zengin G, Menghini L, Malatesta L, De Luca E, Bellagamba G, Uysal S, et al. Comparative study of biological activities and multicomponent pattern of two wild Turkish species: Asphodeline anatolica and Potentilla speciosa. Journal of Enzyme Inhibition and Medicinal Chemistry. 2016;31(sup1):203-8.
  • Lazarova I, Zengin G, Aktumsek A, Gevrenova R, Ceylan R, Uysal S. HPLC–DAD analysis of phenolic compounds and antioxidant properties of Asphodeline lutea roots from Bulgaria and Turkey. Industrial Crops and Products. 2014;61:438-41.
  • Locatelli M, Yerlikaya S, Baloglu MC, Zengin G, Altunoglu YC, Cacciagrano F, et al. Investigations into the therapeutic potential of Asphodeline liburnica roots: In vitro and in silico biochemical and toxicological perspectives. Food and chemical toxicology. 2018;120:172-82.
  • Lazarova I, Zengin G, Bender O, Zheleva-Dimitrova D, Uysal S, Ceylan R, et al. A comparative study of Bulgarian and Turkish Asphodeline lutea root extracts: HPLC–UV profiles, enzyme inhibitory potentials and anti-proliferative activities against MCF-7 and MCF-10A cell lines. Journal of functional foods. 2015;15:254-63.
  • Zengin G, Aktumsek A. Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline anatolica E. Tuzlaci: An endemic plant to Turkey. African Journal of Traditional, Complementary and Alternative Medicines. 2014;11(2):481-8.
  • Uysal S, Zengin G, Locatelli M, Bahadori MB, Mocan A, Bellagamba G, et al. Cytotoxic and enzyme inhibitory potential of two Potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition. Frontiers in pharmacology. 2017;8:290.
  • Zhang B, Zhang Y, Li H, Deng Z, Tsao R. A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives. Trends in Food Science & Technology. 2020;105:347-62.
  • Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. Journal of Functional Foods. 2015;18:820-97.
  • Patial PK, Cannoo DS. Evaluation of volatile compounds, phenolic acids, antioxidant potential and DFT study of essential oils from different parts of Araucaria columnaris (G. Forst.) Hook. from India. Food and Chemical Toxicology. 2020;141:111376.
  • Belhaoues S, Amri S, Bensouilah M. Major phenolic compounds, antioxidant and antibacterial activities of Anthemis praecox Link aerial parts. South African Journal of Botany. 2020;131:200-5.
  • Barbouchi M, Elamrani K, El Idrissi M, Choukrad Mb. A comparative study on phytochemical screening, quantification of phenolic contents and antioxidant properties of different solvent extracts from various parts of Pistacia lentiscus L. Journal of King Saud University - Science. 2020;32(1):302-6.
  • Alnuqaydan AM, Rah B. Comparative assessment of biological activities of different parts of halophytic plant Tamarix articulata (T. articulata) growing in Saudi Arabia. Saudi Journal of Biological Sciences. 2020;27(10):2586-92.
  • Sánchez-Rangel JC, Benavides J, Heredia JB, Cisneros-Zevallos L, Jacobo-Velázquez DA. The Folin–Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Analytical Methods. 2013;5(21):5990-9.
  • Wu L, Wu W, Cai Y, Li C, Wang L. HPLC fingerprinting-based multivariate analysis of phenolic compounds in mango leaves varieties: Correlation to their antioxidant activity and in silico α-glucoidase inhibitory ability. Journal of Pharmaceutical and Biomedical Analysis. 2020;191:113616.
  • Lou X, Xu H, Hanna M, Yuan L. Identification and quantification of free, esterified, glycosylated and insoluble-bound phenolic compounds in hawthorn berry fruit (Crataegus pinnatifida) and antioxidant activity evaluation. LWT. 2020;130:109643.
  • Sarikurkcu C, Andrade JC, Ozer MS, de Lima Silva JMF, Ceylan O, de Sousa EO, et al. LC-MS/MS profiles and interrelationships between the enzyme inhibition activity, total phenolic content and antioxidant potential of Micromeria nervosa extracts. Food Chemistry. 2020;328:126930.
  • Bupleurum croceum based on the composition of phenolic compounds: In vitro and in silico approaches. Food and Chemical Toxicology. 2017;107:597-608.
  • Benabderrahim MA, Elfalleh W, Sarikurkcu C, Sarikurkcu RB. Biological activities and phytochemical composition of organs from Loranthus europaeus. Industrial Crops and Products. 2019;141:111772.
  • Etienne OK, Dall’Acqua S, Sinan KI, Ferrarese I, Sut S, Sadeer NB, et al. Chemical characterization, antioxidant and enzyme inhibitory effects of Mitracarpus hirtus extracts. Journal of Pharmaceutical and Biomedical Analysis. 2020:113799.
  • Bibi Sadeer N, Montesano D, Albrizio S, Zengin G, Mahomoodally MF. The Versatility of Antioxidant Assays in Food Science and Safety—Chemistry, Applications, Strengths, and Limitations. Antioxidants. 2020;9(8):709.
  • Rice-Evans C, Miller N, Paganga G. Antioxidant properties of phenolic compounds. Trends in plant science. 1997;2(4):152-9.
  • Wang T, Jonsdottir R, Ólafsdóttir G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food chemistry. 2009;116(1):240-8.
  • Mishra P, Kumar A, Panda G. Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998–2018). Bioorganic & Medicinal Chemistry. 2019;27(6):895-930.
  • Papoutsis K, Zhang J, Bowyer MC, Brunton N, Gibney ER, Lyng J. Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chemistry. 2021;338:128119.
  • Mukherjee PK, Biswas R, Sharma A, Banerjee S, Biswas S, Katiyar CK. Validation of medicinal herbs for anti-tyrosinase potential. Journal of Herbal Medicine. 2018;14:1-16.
  • Dhameja M, Gupta P. Synthetic heterocyclic candidates as promising α-glucosidase inhibitors: An overview. European Journal of Medicinal Chemistry. 2019;176:343-77.
  • Marucci G, Buccioni M, Ben DD, Lambertucci C, Volpini R, Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease. Neuropharmacology. 2020:108352.
  • Saeedi M, Eslamifar M, Khezri K. Kojic acid applications in cosmetic and pharmaceutical preparations. Biomedicine & Pharmacotherapy. 2019;110:582-93.

Asphodeline baytopiae’nin (Xanthorhoeaceae) Farklı Kısımlarından Elde Edilen Ekstrakların Antioksidan ve Enzim İnhibitör Özellikleri Üzerine Bir Çalışma

Year 2021, , 174 - 181, 31.12.2021
https://doi.org/10.46810/tdfd.882790

Abstract

Asphodeline Reichb. cinsi gıda ve ilaç kaynağı olarak büyük bir ilgiye sahiptir. Bu çalışmada, Asphodeline baytopiae Tuzlaci’’nin (Xanthorhoeaceae) farklı kısımlarından (kök, gövde, yaprak ve tohum) elde edilen farklı çözücü ekstraktlarının (aseton, metanol ve su) biyolojik aktiviteleri belirlenmiştir. Biyolojik özellikleri için; antioksidan ve enzim inhibitör etkileri ortaya konulmuştur. Serbest radikal (DPPH ve ABTS), indirgeme gücü (CUPRAC ve FRAP), metal şelatlama ve fosfomolibdat testlerini içeren farklı antioksidan test sistemleri kullanılmıştır. Ayrıca, enzim inhibitör etkiler kolinesterazlar (AChE ve BChE), tirozinaz, α-amilaz ve α-glukozidaz’a karşı araştırılmıştır. Bunlara ek olarak, her bir ekstraktın toplam fenolik ve flavonoid içerikleri de belirlenmiştir. Gövde-metanol ekstraktının en yüksek toplam fenolik (73.57 mg GAE/g ekstrakt) ve flavonoid (75.04 mg RE/g ekstrakt) içeriğine sahip olduğu görülmüştür. Genel olarak, gövde ekstrakları; yaprak, kök ve tohum ile kıyaslandığında güçlü antioksidan yetenekler sergilemektedir. Kolinesteraz inhibisyon testlerinde, aseton ve metanol ekstraktlar inhibitör etkiler gösterirken, su ekstraklarının aktif olmadığı gözlenmiştir. Tirozinaz inhibitör etkileri 4.83 ile 74.64 mg KAE/g ekstrakt arasında değişmektedir. α-Amilaz ve α- glukozidaz inhisyonu sırasıyla 0.22-0.77 mmol ACAE/g ekstrakt ve 3.42-4.65 mmol ACAE/g ekstrakt şeklindedir. Bu sonuçlar A. baytopiae’nin gıda ve farmasötik endüstrileri için doğal ajanların değerli bir kaynağı olarak düşünülebileceğini önermektedir.

References

  • Kaiser AB, Zhang N, Der Pluijm WV. Global Prevalence of Type 2 Diabetes over the Next Ten Years (2018-2028). Diabetes. 2018;67(Supplement 1):202-LB.
  • Alzheimer's Association. 2019 Alzheimer's disease facts and figures. Alzheimer's & Dementia. 2019;15(3):321-87.
  • Chen Y, Kirchmair J. Cheminformatics in Natural Product‐Based Drug Discovery. Molecular Informatics. 2020;39(12):2000171.
  • Chávez-Hernández AL, Sánchez-Cruz N, Medina-Franco JL. Fragment Library of Natural Products and Compound Databases for Drug Discovery. Biomolecules. 2020;10(11):1518.
  • Noroozi J, Zare G, Sherafati M, Mahmoodi M, Moser D, Asgarpour Z, et al. Patterns of endemism in Turkey, the meeting point of three global biodiversity hotspots, based on three diverse families of vascular plants. Frontiers in Ecology and Evolution. 2019;7:159.
  • Şenkardeş İ, Bulut G, Doğan A, Tuzlacı E. An Ethnobotanical Analysis on Wild Edible Plants of the Turkish Asteraceae Taxa. Agriculturae Conspectus Scientificus. 2019;84(1):17-28.
  • Sezik E, Yeşilada E, Honda G, Takaishi Y, Takeda Y, Tanaka T. Traditional medicine in Turkey X. Folk medicine in Central Anatolia. Journal of Ethnopharmacology. 2001;75(2):95-115.
  • Güneş S, Savran A, Paksoy MY, Koşar M, Çakılcıoğlu U. Ethnopharmacological survey of medicinal plants in Karaisalı and its surrounding (Adana-Turkey). Journal of Herbal Medicine. 2017;8:68-75.
  • Lazarova I, Zengin G, Gevrenova R, Nedialkov P, Aneva I, Aumeeruddy MZ, et al. A comparative study of UHPLC/Orbitrap MS metabolomics profiles and biological properties of Asphodeline taurica from Bulgaria and Turkey. Journal of Pharmaceutical and Biomedical Analysis. 2019;168:174-80.
  • Melucci D, Locatelli M, Locatelli C, Zappi A, De Laurentiis F, Carradori S, et al. A comparative assessment of biological effects and chemical profile of Italian Asphodeline lutea extracts. Molecules. 2018;23(2):461.
  • Kargıoğlu M, Cenkci S, Serteser A, Evliyaoğlu N, Konuk M, Kök MŞ, et al. An ethnobotanical survey of inner-West Anatolia, Turkey. Human Ecology. 2008;36(5):763-77.
  • Zengin G. A study on in vitro enzyme inhibitory properties of Asphodeline anatolica: New sources of natural inhibitors for public health problems. Industrial Crops and Products. 2016;83:39-43.
  • Locatelli M, Zengin G, Uysal A, Carradori S, De Luca E, Bellagamba G, et al. Multicomponent pattern and biological activities of seven Asphodeline taxa: potential sources of natural-functional ingredients for bioactive formulations. Journal of enzyme inhibition and medicinal chemistry. 2017;32(1):60-7.
  • Zengin G, Locatelli M, Ceylan R, Aktumsek A. Anthraquinone profile, antioxidant and enzyme inhibitory effect of root extracts of eight Asphodeline taxa from Turkey: can Asphodeline roots be considered as a new source of natural compounds? Journal of enzyme inhibition and medicinal chemistry. 2016;31(5):754-9.
  • Zengin G, Menghini L, Malatesta L, De Luca E, Bellagamba G, Uysal S, et al. Comparative study of biological activities and multicomponent pattern of two wild Turkish species: Asphodeline anatolica and Potentilla speciosa. Journal of Enzyme Inhibition and Medicinal Chemistry. 2016;31(sup1):203-8.
  • Lazarova I, Zengin G, Aktumsek A, Gevrenova R, Ceylan R, Uysal S. HPLC–DAD analysis of phenolic compounds and antioxidant properties of Asphodeline lutea roots from Bulgaria and Turkey. Industrial Crops and Products. 2014;61:438-41.
  • Locatelli M, Yerlikaya S, Baloglu MC, Zengin G, Altunoglu YC, Cacciagrano F, et al. Investigations into the therapeutic potential of Asphodeline liburnica roots: In vitro and in silico biochemical and toxicological perspectives. Food and chemical toxicology. 2018;120:172-82.
  • Lazarova I, Zengin G, Bender O, Zheleva-Dimitrova D, Uysal S, Ceylan R, et al. A comparative study of Bulgarian and Turkish Asphodeline lutea root extracts: HPLC–UV profiles, enzyme inhibitory potentials and anti-proliferative activities against MCF-7 and MCF-10A cell lines. Journal of functional foods. 2015;15:254-63.
  • Zengin G, Aktumsek A. Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline anatolica E. Tuzlaci: An endemic plant to Turkey. African Journal of Traditional, Complementary and Alternative Medicines. 2014;11(2):481-8.
  • Uysal S, Zengin G, Locatelli M, Bahadori MB, Mocan A, Bellagamba G, et al. Cytotoxic and enzyme inhibitory potential of two Potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition. Frontiers in pharmacology. 2017;8:290.
  • Zhang B, Zhang Y, Li H, Deng Z, Tsao R. A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives. Trends in Food Science & Technology. 2020;105:347-62.
  • Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. Journal of Functional Foods. 2015;18:820-97.
  • Patial PK, Cannoo DS. Evaluation of volatile compounds, phenolic acids, antioxidant potential and DFT study of essential oils from different parts of Araucaria columnaris (G. Forst.) Hook. from India. Food and Chemical Toxicology. 2020;141:111376.
  • Belhaoues S, Amri S, Bensouilah M. Major phenolic compounds, antioxidant and antibacterial activities of Anthemis praecox Link aerial parts. South African Journal of Botany. 2020;131:200-5.
  • Barbouchi M, Elamrani K, El Idrissi M, Choukrad Mb. A comparative study on phytochemical screening, quantification of phenolic contents and antioxidant properties of different solvent extracts from various parts of Pistacia lentiscus L. Journal of King Saud University - Science. 2020;32(1):302-6.
  • Alnuqaydan AM, Rah B. Comparative assessment of biological activities of different parts of halophytic plant Tamarix articulata (T. articulata) growing in Saudi Arabia. Saudi Journal of Biological Sciences. 2020;27(10):2586-92.
  • Sánchez-Rangel JC, Benavides J, Heredia JB, Cisneros-Zevallos L, Jacobo-Velázquez DA. The Folin–Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Analytical Methods. 2013;5(21):5990-9.
  • Wu L, Wu W, Cai Y, Li C, Wang L. HPLC fingerprinting-based multivariate analysis of phenolic compounds in mango leaves varieties: Correlation to their antioxidant activity and in silico α-glucoidase inhibitory ability. Journal of Pharmaceutical and Biomedical Analysis. 2020;191:113616.
  • Lou X, Xu H, Hanna M, Yuan L. Identification and quantification of free, esterified, glycosylated and insoluble-bound phenolic compounds in hawthorn berry fruit (Crataegus pinnatifida) and antioxidant activity evaluation. LWT. 2020;130:109643.
  • Sarikurkcu C, Andrade JC, Ozer MS, de Lima Silva JMF, Ceylan O, de Sousa EO, et al. LC-MS/MS profiles and interrelationships between the enzyme inhibition activity, total phenolic content and antioxidant potential of Micromeria nervosa extracts. Food Chemistry. 2020;328:126930.
  • Bupleurum croceum based on the composition of phenolic compounds: In vitro and in silico approaches. Food and Chemical Toxicology. 2017;107:597-608.
  • Benabderrahim MA, Elfalleh W, Sarikurkcu C, Sarikurkcu RB. Biological activities and phytochemical composition of organs from Loranthus europaeus. Industrial Crops and Products. 2019;141:111772.
  • Etienne OK, Dall’Acqua S, Sinan KI, Ferrarese I, Sut S, Sadeer NB, et al. Chemical characterization, antioxidant and enzyme inhibitory effects of Mitracarpus hirtus extracts. Journal of Pharmaceutical and Biomedical Analysis. 2020:113799.
  • Bibi Sadeer N, Montesano D, Albrizio S, Zengin G, Mahomoodally MF. The Versatility of Antioxidant Assays in Food Science and Safety—Chemistry, Applications, Strengths, and Limitations. Antioxidants. 2020;9(8):709.
  • Rice-Evans C, Miller N, Paganga G. Antioxidant properties of phenolic compounds. Trends in plant science. 1997;2(4):152-9.
  • Wang T, Jonsdottir R, Ólafsdóttir G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food chemistry. 2009;116(1):240-8.
  • Mishra P, Kumar A, Panda G. Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998–2018). Bioorganic & Medicinal Chemistry. 2019;27(6):895-930.
  • Papoutsis K, Zhang J, Bowyer MC, Brunton N, Gibney ER, Lyng J. Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chemistry. 2021;338:128119.
  • Mukherjee PK, Biswas R, Sharma A, Banerjee S, Biswas S, Katiyar CK. Validation of medicinal herbs for anti-tyrosinase potential. Journal of Herbal Medicine. 2018;14:1-16.
  • Dhameja M, Gupta P. Synthetic heterocyclic candidates as promising α-glucosidase inhibitors: An overview. European Journal of Medicinal Chemistry. 2019;176:343-77.
  • Marucci G, Buccioni M, Ben DD, Lambertucci C, Volpini R, Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease. Neuropharmacology. 2020:108352.
  • Saeedi M, Eslamifar M, Khezri K. Kojic acid applications in cosmetic and pharmaceutical preparations. Biomedicine & Pharmacotherapy. 2019;110:582-93.
There are 42 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Gokhan Zengin 0000-0001-6548-7823

Güneş Ak 0000-0002-9539-0763

Abdurrahman Aktümsek 0000-0002-5151-2650

Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Zengin, G., Ak, G., & Aktümsek, A. (2021). Asphodeline baytopiae’nin (Xanthorhoeaceae) Farklı Kısımlarından Elde Edilen Ekstrakların Antioksidan ve Enzim İnhibitör Özellikleri Üzerine Bir Çalışma. Türk Doğa Ve Fen Dergisi, 10(2), 174-181. https://doi.org/10.46810/tdfd.882790
AMA Zengin G, Ak G, Aktümsek A. Asphodeline baytopiae’nin (Xanthorhoeaceae) Farklı Kısımlarından Elde Edilen Ekstrakların Antioksidan ve Enzim İnhibitör Özellikleri Üzerine Bir Çalışma. TDFD. December 2021;10(2):174-181. doi:10.46810/tdfd.882790
Chicago Zengin, Gokhan, Güneş Ak, and Abdurrahman Aktümsek. “Asphodeline baytopiae’nin (Xanthorhoeaceae) Farklı Kısımlarından Elde Edilen Ekstrakların Antioksidan Ve Enzim İnhibitör Özellikleri Üzerine Bir Çalışma”. Türk Doğa Ve Fen Dergisi 10, no. 2 (December 2021): 174-81. https://doi.org/10.46810/tdfd.882790.
EndNote Zengin G, Ak G, Aktümsek A (December 1, 2021) Asphodeline baytopiae’nin (Xanthorhoeaceae) Farklı Kısımlarından Elde Edilen Ekstrakların Antioksidan ve Enzim İnhibitör Özellikleri Üzerine Bir Çalışma. Türk Doğa ve Fen Dergisi 10 2 174–181.
IEEE G. Zengin, G. Ak, and A. Aktümsek, “Asphodeline baytopiae’nin (Xanthorhoeaceae) Farklı Kısımlarından Elde Edilen Ekstrakların Antioksidan ve Enzim İnhibitör Özellikleri Üzerine Bir Çalışma”, TDFD, vol. 10, no. 2, pp. 174–181, 2021, doi: 10.46810/tdfd.882790.
ISNAD Zengin, Gokhan et al. “Asphodeline baytopiae’nin (Xanthorhoeaceae) Farklı Kısımlarından Elde Edilen Ekstrakların Antioksidan Ve Enzim İnhibitör Özellikleri Üzerine Bir Çalışma”. Türk Doğa ve Fen Dergisi 10/2 (December 2021), 174-181. https://doi.org/10.46810/tdfd.882790.
JAMA Zengin G, Ak G, Aktümsek A. Asphodeline baytopiae’nin (Xanthorhoeaceae) Farklı Kısımlarından Elde Edilen Ekstrakların Antioksidan ve Enzim İnhibitör Özellikleri Üzerine Bir Çalışma. TDFD. 2021;10:174–181.
MLA Zengin, Gokhan et al. “Asphodeline baytopiae’nin (Xanthorhoeaceae) Farklı Kısımlarından Elde Edilen Ekstrakların Antioksidan Ve Enzim İnhibitör Özellikleri Üzerine Bir Çalışma”. Türk Doğa Ve Fen Dergisi, vol. 10, no. 2, 2021, pp. 174-81, doi:10.46810/tdfd.882790.
Vancouver Zengin G, Ak G, Aktümsek A. Asphodeline baytopiae’nin (Xanthorhoeaceae) Farklı Kısımlarından Elde Edilen Ekstrakların Antioksidan ve Enzim İnhibitör Özellikleri Üzerine Bir Çalışma. TDFD. 2021;10(2):174-81.