Research Article
BibTex RIS Cite

İnsanlarda Ciddi Hastalıklara Neden Olan Bakteri, Maya ve Dermatofit Mantarları Üzerinde Poly (DMAA-co-MMA) 'nin İnhibe Edici Etkisi

Year 2021, , 84 - 88, 31.12.2021
https://doi.org/10.46810/tdfd.883996

Abstract

Bu çalışmada insanlarda ciddi hastalıklara neden olan bakteri, maya ve dermatofit mantarları gibi mikroorganizmalar üzerindeki poli dimetilakrilamid-ko-metilmetakrilat’ın poli P (DMAA-co-MMA) diklorometan içeren çözeltilerinin inhibitör etkilerini araştırıldı. Disk difüzyon yöntemi ile incelenen bu çözelti, Bacillus megaterium ve Klebsiella pneumoniae dışındaki tüm bakterilerin (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus) ve dermatofit mantarlarının çoğalmasını engelleyerek antimikrobiyal özelliğe sahiptir. Antimikrobiyal duyarlılık verilerinde, diklorometan içinde çözünen poli P (DMAA-ko-MMA) maya ve dermatofit mantarlarının büyümesine karşı inhibe edici bir etkiye sahiptir (Candida spp. üzerinde 11.3mm / inhibisyon alanı - 12.3 mm / inhibisyon alanı) ve Epidermophyton sp. üzerinde 11.3 mm / inhibisyon alanı - Trichophyton sp. üzerinde 11.3 mm / inhibisyon alanı) (P <0.001). Disk difüzyon yöntemini güçlendiren MIC (Minimal inhibisyon konsantrasyonu) sınır değerleri bakteriler, mayalar, dermatofitlerin büyümesini engelleyen en küçük değer olarak 50-100 μL'dir (10 mL de 4500- 9000 μg). Antimikrobiyal bileşik, gelecek bu alandaki çalışmaları aydınlatmak için büyük avantaj sağlayabilir. Çalışmada kullanılan polimer, iltihaplanma ve mantar enfeksiyonlarına neden olan mikroorganizmalar ile savaşan antimikrobiyal polimerlere umut verici yeni bir katkı sağlayacaktır.

References

  • [1] Chen H, Li M, Liu Z, Hu R, Li S, Guo Y, et al. Design of antibacterial peptide-like conjugated molecule with broad spectrum antimicrobial ability. Sci China Chem. 2018;61:113-117. Doi:10.1007/s11426-017-9034-y
  • [2] Peng F, Qiu L, Chai R, Meng F, Yan C, Chen Y, et al. Conjugated polymer‐based nanoparticles for cancer cell‐targeted and image‐guided photodynamic therapy. Macromol Chem Phys. 2018;219(4):1700440. Doi: 10.1002/macp.201700440
  • [3] Kenawy ER, Worley SD, Broughton R. The chemistry and appli-cations of antimicrobial polymers: A state-of-the-art review. Biomacromolecules. 2007;8(5):1359-84. Doi: 10.1021/bm061150q
  • [4] Xu FJ, Neoh KG, Kang ET. Bioactive surfaces and biomaterials via atom transfer radical polymerization. Prog Polym Sci. 2009;34: 719-61. Doi: 10.1016/j.progpolymsci.2009.04.005
  • [5] Chemburu S, Corbitt TS, Ista L, Ji E, Lopez G, Ogawa K, et al. Light-induced biocidal action of conjugated polyelectrolytes supported on colloids. Langmuir. 2008;24(19):11053-11062. Doi: 10.1021/la8016547.
  • [6] Ma BC, Ghasimi S, Landfester K, Zhang KAI. Enhanced visible light promoted antibacterial efficiency of conjugated microporous polymer nanoparticles via molecular doping. J Mater Chem B. 2016; 4: 5112-5118. Doi: 10.1039/c6tb00943c.
  • [7] Parthasarathy A, Pappas HC, Hill EH, Huang Y, Whitten DG, Schanze KS. Conjugated polyelectrolytes with imidazolium solubilizing groups. Properties and application to photodynamic inactivation of bacteria. ACS Appl Mater Interfaces. 2015;7(51):28027-28034. Doi: 10.1021/acsami.5b02771.
  • [8] Xu Q, He P, Wang J, Chen H, Lv F, Liu L, et al. Antimicrobial activity of a conjugated polymer with cationic backbone. Dyes Pigm. 2009;160:519-523. Doi: 10.1016/j.dyepig.2018.08.049
  • [9] Murata H, Koepsel RR, Matyjaszewski K, Russell AJ. Permanent, Non-Leaching antibacterial surface2: How high density cationic surfaces kill bacterial cells. Biomaterials. 2007;28(32):4870−9. Doi: 10.1016/j.biomaterials.2007.06.012
  • [10] Gottenbos B, Grijpma DW, Van der Mei HC, Feijen J, Busscher HJ. Antimicrobial effects of positively charged surfaces on adhering gram-positive and gram-negative bacteria. J Antimicrob Chemother. 2001; 48:7-13. Doi: 10.1093/jac/48.1.7
  • [11] Li G, Shen J, Zhu Y. A Study of pyridinium-type functional polymers. III. preparation and characterization of insoluble pyridinium-type polymers. J Appl Polym Sci. 2000;78:668–75. Doi: https://doi.org/10.1002/1097-4628(20001017)78:3<668: AID-APP230>3.0.CO;2-A
  • [12] Sauvet G, Dupond S, Kazmierski K, Chojnowski J. Biocidal polymers active by contact. synthesis of polysiloxanes with biocidal activity. J Appl Polym Sci. 2000;75:1005-12. Doi: https://doi.org/10.1002/(SICI)1097-4628(20000222)75:8<1005 :AID-APP5>3.0.CO;2-W
  • [13] Abel T, Cohen JI, Engel R, Filshtinskaya M, Melkonian A, Melkonian K. Preparation and investigation of antibacterial carbohydratebased surfaces. Carbohydr Res. 2002;337(24): 2495–9. Doi: 10.1016/s0008-6215(02)00316-6
  • [14] Kenawy El-R, Worley SD, Broughton R. The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules. 2007;8(5):1359–1384. Doi: 10.1021/bm061150q
  • [15] Torğut G, Pıhtılı G, Erecevit Sönmez P, Erden Y, Kırbağ S. Synthesis and antimicrobial and anticancer activities of Sodium acrylate copolymers. J Bioact Compat Poly. 2020; 35:179-188. Doi: 10.1177/0883911520913910
  • [16] NCCLS. Methods for dilution and antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard- fifth edition, NCCLS document M7-A5, NCCLS, Wayne, P A, USA: 2000.
  • [17] Tüylek Z. Smart polymers used in the field of health. J Inonu Univ Health Serv Voc Sch. 2019;7(1):81-95. Doi: 10.33715/inonusaglik.518570
  • 18] Ekpo MA, Etim PC. Antimicrobial activity of ethanolic and aqueous extracts of Sida acuta on microorganisms from skin infections. J Med Plant Res. 2009;3(9): 621-624.
  • [19] Gottenbos B, Van der mei HC, Busscher HJ, Grijpma DW, Feijen J. Initial adhesion and surface growth of Pseudomonas aeruginosa on negatively and positively charged poly(methacrylates). J Mater Sci Mater Med. 2000;10(12):853-5. Doi: 10.1023/a:1008989416939
  • [20] Gratzl G, Paulik C, Hild S, Guggenbichler JP, Lackner M. Antimicrobial activity of poly (acrylic acid) block copolymers. Mater Sci Eng C. 2014; 38:94-100. Doi: 10.1016/j.msec.2014.01.050
  • [21] Kamaruzzaman NF, Tan LP, Hamdan RH, Choong SS, Wong WK, Gibson AJ, et al. Antimicrobial Ppolymers: The potential replacement of existing antibiotics? Int J Mol Sci. 2019;20(11): 2747. Doi: 10.3390/ijms20112747.
  • [22] [Internet]. Anatomical structures of bacteria (Bakterilerin anatomik yapıları). [cited 2020 Febr10]. Available from: http://cdn.istanbul.edu.tr/FileHandler2.ashx?f=bakterilerin-anatomik-yapilari.pdf. 2020.
  • [23] Chang CC, Merritt K. Effect of Staphylococcus epidermidis on adherence of Pseudomonas aeruginosa and Proteus mirabilis to polymethyl methacrylate (PMMA) and gentamicin-containing PMMA. J Orthop Res. 1991;9(2):284-8. Doi: 10.1002/jor.1100090217.
  • [24] Veyries ML, Faurisson F, Joly-Guillou ML, Rouvei B. Control of Staphylococcal adhesion to Polymethylmethacrylate and enhancement of susceptibility to antibiotics by poloxamer. A A C. 2000; 44(4):1093-1096. Doi:10.1128/aac.44.4.1093-1096.2000.

The Inhibitory Effect of Poly (DMAA-co-MMA) on Bacteria, Yeast and Dermatophyte Fungi Which Cause Serious Illnesses in People

Year 2021, , 84 - 88, 31.12.2021
https://doi.org/10.46810/tdfd.883996

Abstract

In this study, it was researched the inhibitor effects of solutions including dichloromethane of poly dimethylacrylamide-co-methylmethacrylate P(DMAA-co-MMA) on microorganisms such as bacteria, yeast and dermatophyte fungi which cause serious illnesses in people. This solution, which was examined by the disc diffusion method, has antimicrobial feature upon preventing the proliferation of all bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus) and dermatophyte fungi except Bacillus megaterium and Klebsiella pneumoniae. In antimicrobial susceptibility data; poly P(DMAA-co-MMA) dissolved in dichloromethane has an inhibitory effect against the growth of yeast and dermatophyte fungi (on Candida spp. with 11.3 mm / inhibition area - 12.3 mm / inhibition area and 11.3 mm / inhibition area on Epidermophyton sp. - 11.3 mm / inhibition area on Trichophyton sp.) (P <0.001). MIC (Minimal inhibition concentration) breakpoints that strengthen the disk diffusion method are 50-100 μL (4500– 9000 μg in 10 mL) as the smallest value that inhibits the growth of bacteria, yeasts, dermatophyta. The antimicrobial compound can be of great advantage to illuminate future studies in this area. The polymer used in the study will provide a promising new addition to antimicrobial polymers that fight microorganisms that cause inflammation and fungal infections.

References

  • [1] Chen H, Li M, Liu Z, Hu R, Li S, Guo Y, et al. Design of antibacterial peptide-like conjugated molecule with broad spectrum antimicrobial ability. Sci China Chem. 2018;61:113-117. Doi:10.1007/s11426-017-9034-y
  • [2] Peng F, Qiu L, Chai R, Meng F, Yan C, Chen Y, et al. Conjugated polymer‐based nanoparticles for cancer cell‐targeted and image‐guided photodynamic therapy. Macromol Chem Phys. 2018;219(4):1700440. Doi: 10.1002/macp.201700440
  • [3] Kenawy ER, Worley SD, Broughton R. The chemistry and appli-cations of antimicrobial polymers: A state-of-the-art review. Biomacromolecules. 2007;8(5):1359-84. Doi: 10.1021/bm061150q
  • [4] Xu FJ, Neoh KG, Kang ET. Bioactive surfaces and biomaterials via atom transfer radical polymerization. Prog Polym Sci. 2009;34: 719-61. Doi: 10.1016/j.progpolymsci.2009.04.005
  • [5] Chemburu S, Corbitt TS, Ista L, Ji E, Lopez G, Ogawa K, et al. Light-induced biocidal action of conjugated polyelectrolytes supported on colloids. Langmuir. 2008;24(19):11053-11062. Doi: 10.1021/la8016547.
  • [6] Ma BC, Ghasimi S, Landfester K, Zhang KAI. Enhanced visible light promoted antibacterial efficiency of conjugated microporous polymer nanoparticles via molecular doping. J Mater Chem B. 2016; 4: 5112-5118. Doi: 10.1039/c6tb00943c.
  • [7] Parthasarathy A, Pappas HC, Hill EH, Huang Y, Whitten DG, Schanze KS. Conjugated polyelectrolytes with imidazolium solubilizing groups. Properties and application to photodynamic inactivation of bacteria. ACS Appl Mater Interfaces. 2015;7(51):28027-28034. Doi: 10.1021/acsami.5b02771.
  • [8] Xu Q, He P, Wang J, Chen H, Lv F, Liu L, et al. Antimicrobial activity of a conjugated polymer with cationic backbone. Dyes Pigm. 2009;160:519-523. Doi: 10.1016/j.dyepig.2018.08.049
  • [9] Murata H, Koepsel RR, Matyjaszewski K, Russell AJ. Permanent, Non-Leaching antibacterial surface2: How high density cationic surfaces kill bacterial cells. Biomaterials. 2007;28(32):4870−9. Doi: 10.1016/j.biomaterials.2007.06.012
  • [10] Gottenbos B, Grijpma DW, Van der Mei HC, Feijen J, Busscher HJ. Antimicrobial effects of positively charged surfaces on adhering gram-positive and gram-negative bacteria. J Antimicrob Chemother. 2001; 48:7-13. Doi: 10.1093/jac/48.1.7
  • [11] Li G, Shen J, Zhu Y. A Study of pyridinium-type functional polymers. III. preparation and characterization of insoluble pyridinium-type polymers. J Appl Polym Sci. 2000;78:668–75. Doi: https://doi.org/10.1002/1097-4628(20001017)78:3<668: AID-APP230>3.0.CO;2-A
  • [12] Sauvet G, Dupond S, Kazmierski K, Chojnowski J. Biocidal polymers active by contact. synthesis of polysiloxanes with biocidal activity. J Appl Polym Sci. 2000;75:1005-12. Doi: https://doi.org/10.1002/(SICI)1097-4628(20000222)75:8<1005 :AID-APP5>3.0.CO;2-W
  • [13] Abel T, Cohen JI, Engel R, Filshtinskaya M, Melkonian A, Melkonian K. Preparation and investigation of antibacterial carbohydratebased surfaces. Carbohydr Res. 2002;337(24): 2495–9. Doi: 10.1016/s0008-6215(02)00316-6
  • [14] Kenawy El-R, Worley SD, Broughton R. The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules. 2007;8(5):1359–1384. Doi: 10.1021/bm061150q
  • [15] Torğut G, Pıhtılı G, Erecevit Sönmez P, Erden Y, Kırbağ S. Synthesis and antimicrobial and anticancer activities of Sodium acrylate copolymers. J Bioact Compat Poly. 2020; 35:179-188. Doi: 10.1177/0883911520913910
  • [16] NCCLS. Methods for dilution and antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard- fifth edition, NCCLS document M7-A5, NCCLS, Wayne, P A, USA: 2000.
  • [17] Tüylek Z. Smart polymers used in the field of health. J Inonu Univ Health Serv Voc Sch. 2019;7(1):81-95. Doi: 10.33715/inonusaglik.518570
  • 18] Ekpo MA, Etim PC. Antimicrobial activity of ethanolic and aqueous extracts of Sida acuta on microorganisms from skin infections. J Med Plant Res. 2009;3(9): 621-624.
  • [19] Gottenbos B, Van der mei HC, Busscher HJ, Grijpma DW, Feijen J. Initial adhesion and surface growth of Pseudomonas aeruginosa on negatively and positively charged poly(methacrylates). J Mater Sci Mater Med. 2000;10(12):853-5. Doi: 10.1023/a:1008989416939
  • [20] Gratzl G, Paulik C, Hild S, Guggenbichler JP, Lackner M. Antimicrobial activity of poly (acrylic acid) block copolymers. Mater Sci Eng C. 2014; 38:94-100. Doi: 10.1016/j.msec.2014.01.050
  • [21] Kamaruzzaman NF, Tan LP, Hamdan RH, Choong SS, Wong WK, Gibson AJ, et al. Antimicrobial Ppolymers: The potential replacement of existing antibiotics? Int J Mol Sci. 2019;20(11): 2747. Doi: 10.3390/ijms20112747.
  • [22] [Internet]. Anatomical structures of bacteria (Bakterilerin anatomik yapıları). [cited 2020 Febr10]. Available from: http://cdn.istanbul.edu.tr/FileHandler2.ashx?f=bakterilerin-anatomik-yapilari.pdf. 2020.
  • [23] Chang CC, Merritt K. Effect of Staphylococcus epidermidis on adherence of Pseudomonas aeruginosa and Proteus mirabilis to polymethyl methacrylate (PMMA) and gentamicin-containing PMMA. J Orthop Res. 1991;9(2):284-8. Doi: 10.1002/jor.1100090217.
  • [24] Veyries ML, Faurisson F, Joly-Guillou ML, Rouvei B. Control of Staphylococcal adhesion to Polymethylmethacrylate and enhancement of susceptibility to antibiotics by poloxamer. A A C. 2000; 44(4):1093-1096. Doi:10.1128/aac.44.4.1093-1096.2000.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Pınar Erecevit Sönmez 0000-0003-2389-0694

Güzin Pıhtılı 0000-0003-2261-6810

Sevda Kırbag 0000-0002-4337-8236

Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Erecevit Sönmez, P., Pıhtılı, G., & Kırbag, S. (2021). The Inhibitory Effect of Poly (DMAA-co-MMA) on Bacteria, Yeast and Dermatophyte Fungi Which Cause Serious Illnesses in People. Türk Doğa Ve Fen Dergisi, 10(2), 84-88. https://doi.org/10.46810/tdfd.883996
AMA Erecevit Sönmez P, Pıhtılı G, Kırbag S. The Inhibitory Effect of Poly (DMAA-co-MMA) on Bacteria, Yeast and Dermatophyte Fungi Which Cause Serious Illnesses in People. TDFD. December 2021;10(2):84-88. doi:10.46810/tdfd.883996
Chicago Erecevit Sönmez, Pınar, Güzin Pıhtılı, and Sevda Kırbag. “The Inhibitory Effect of Poly (DMAA-Co-MMA) on Bacteria, Yeast and Dermatophyte Fungi Which Cause Serious Illnesses in People”. Türk Doğa Ve Fen Dergisi 10, no. 2 (December 2021): 84-88. https://doi.org/10.46810/tdfd.883996.
EndNote Erecevit Sönmez P, Pıhtılı G, Kırbag S (December 1, 2021) The Inhibitory Effect of Poly (DMAA-co-MMA) on Bacteria, Yeast and Dermatophyte Fungi Which Cause Serious Illnesses in People. Türk Doğa ve Fen Dergisi 10 2 84–88.
IEEE P. Erecevit Sönmez, G. Pıhtılı, and S. Kırbag, “The Inhibitory Effect of Poly (DMAA-co-MMA) on Bacteria, Yeast and Dermatophyte Fungi Which Cause Serious Illnesses in People”, TDFD, vol. 10, no. 2, pp. 84–88, 2021, doi: 10.46810/tdfd.883996.
ISNAD Erecevit Sönmez, Pınar et al. “The Inhibitory Effect of Poly (DMAA-Co-MMA) on Bacteria, Yeast and Dermatophyte Fungi Which Cause Serious Illnesses in People”. Türk Doğa ve Fen Dergisi 10/2 (December 2021), 84-88. https://doi.org/10.46810/tdfd.883996.
JAMA Erecevit Sönmez P, Pıhtılı G, Kırbag S. The Inhibitory Effect of Poly (DMAA-co-MMA) on Bacteria, Yeast and Dermatophyte Fungi Which Cause Serious Illnesses in People. TDFD. 2021;10:84–88.
MLA Erecevit Sönmez, Pınar et al. “The Inhibitory Effect of Poly (DMAA-Co-MMA) on Bacteria, Yeast and Dermatophyte Fungi Which Cause Serious Illnesses in People”. Türk Doğa Ve Fen Dergisi, vol. 10, no. 2, 2021, pp. 84-88, doi:10.46810/tdfd.883996.
Vancouver Erecevit Sönmez P, Pıhtılı G, Kırbag S. The Inhibitory Effect of Poly (DMAA-co-MMA) on Bacteria, Yeast and Dermatophyte Fungi Which Cause Serious Illnesses in People. TDFD. 2021;10(2):84-8.