Research Article
BibTex RIS Cite

Fe ve Ti katkılı Çift Fazlı Kalsiyum Fosfatların Sentez ve Karakterizasyonu

Year 2021, , 89 - 94, 31.12.2021
https://doi.org/10.46810/tdfd.885177

Abstract

Bu çalışmada, Ti katkısının Fe esaslı çift fazlı kalsiyum fosfat malzemelerinin yapısal, morfolojik ve termal özellikleri üzerine etkileri araştırılmıştır. X-ışını kırınımı (XRD) analizi, üretilen numunelerin hem hidroksiapatit (HAp) hem de beta trikalsiyum fosfat (β-TCP) fazlarına sahip olduğunu doğrulamaktadır. Ayrıca, Ti katkısındaki artışla β-TCP fazının miktarının arttığı görülmektedir. Fourier dönüşümlü kızılötesi (FTIR) spektroskopisi sonuçları, numunelerdeki karakteristik fonksiyonel grupların varlığını doğrulamaktadır. Ti miktarı morfolojiyi etkilemektedir. Numunelerin ısıl davranışları birbirine benzerdir ve oda sıcaklığından 1000 °C’ye kadar tüm numuneler termal olarak kararlıdırlar. Bu sıcaklık aralığında numunelerdeki kütle kayıpları % 1,63’e eşit veya altındadır.

Supporting Institution

Fırat Üniversitesi Bilimsel Araştırma Projeleri (FÜBAP) Birimi

Project Number

FF.20.16

Thanks

Bu çalışma, Fırat Üniversitesi Bilimsel Araştırma Projeleri (FÜBAP) tarafından FF.20.16 proje kapsamında desteklenmiştir.

References

  • [1] Dorozhkin SV. Calcium Orthophosphates in Nature, Biology and Medicine. Materials. 2009;2(2):399-498.
  • [2] Fang J, Li P, Lu X, Fang L, Lü X, Ren F. A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration. Acta Biomater. 2019;88:503-13.
  • [3] Bazin T, Magnaudeix A, Mayet R, Carles P, Julien I, Demourgues A, et al. Sintering and biocompatibility of copper-doped hydroxyapatite bioceramics. Ceram Int. 2021, https://doi.org/10.1016/j.ceramint.2021.01.225.
  • [4] Sharifianjazi F, Esmaeilkhanian A, Moradi M, Pakseresht A, Asl MS, Karimi-Maleh H, et al. Biocompatibility and mechanical properties of pigeon bone waste extracted natural nano-hydroxyapatite for bone tissue engineering. Mater Sci Eng B Solid State Mater Adv Technol. 2021;264:114950.
  • [5] Tamagawa H, Tenkumo T, Sugaya T, Kawanami M. Effect of nano-hydroxyapatite on bone morphogenetic protein-2-induced hard tissue formation and dentin resorption on a dentin surface. Appl Surf Sci. 2012;262:140-5.
  • [6] Singh RP, Singh JP, Singh C, Kaur T, Pal A. Synthesis, characterization and in-vitro bioactivity evaluation of mesoporous Ca10-xFex(PO4)6(OH)2 nanorods-like particles. Ceram Int. 2020;46:12156-64.
  • [7] Chaair H, Labjar H, Britel O. Synthesis of β-tricalcium phosphate. Morphologie. 2017;101:120-4.
  • [8] Arbez B, Libouban H. Behavior of macrophage and osteoblast cell lines in contact with the β-TCP biomaterial (beta-tricalcium phosphate). Morphologie, 2017;101:154-63.
  • [9] Ates T, Dorozhkin SV, Kaygili O, Kom M, Ercan I, Bulut N, et al. The effects of Mn and/or Ni dopants on the in vitro/in vivo performance, structural and magnetic properties of β-tricalcium phosphate bioceramics. Ceram Int. 2019;45:22752–8.
  • [10] Frasnelli M, Pedranz A, Biesuz M, Dire S, Sglavo VM. Flash sintering of Mg-doped tricalcium phosphate (TCP) nanopowders. J Eur Ceram Soc. 2019;39:3883–92.
  • [11] Ruiz-Aguilar C, Olivares-Pinto U, Aguilar-Reyes EA, López-Juárez R, Alfonso I. Characterization of β-tricalcium phosphate powders synthesized by sol–gel and mechanosynthesis. Bol Soc Esp Ceram V. 2018;57:213–20.
  • [12] Tautkus S, Ishikawa K, Ramanauskas R, Kareiva A. Zinc and chromium co-doped calcium hydroxyapatite: Sol-gel synthesis, characterization, behaviour in simulated body fluid and phase transformations. J Solid State Chem. 2020;284:121202.
  • [13] Aghayan MA, Rodríguez MA. Influence of fuels and combustion aids on solution combustion synthesis of bi-phasic calcium phosphates (BCP). Mater Sci Eng C. 2012;32:2464–8.
  • [14] Batista HA, Silva FN, Lisboa HM, Costa ACFM. Modeling and optimization of combustion synthesis for hydroxyapatite production. Ceram Int. 2020;46:11638–46.
  • [15] An GH, Wang HJ, Kim B-H, Jeong YG, Choa YH. Fabrication and characterization of a hydroxyapatite nanopowder by ultrasonic spray pyrolysis with salt-assisted decomposition. Mater Sci Eng A. 2007;449–451:821–4.
  • [16] Chou YJ, Ningsih HS, Shih S-J. Preparation, characterization and investigation of antibacterial silver-zinc co-doped β-tricalcium phosphate by spray pyrolysis. Ceram Int. 2020;46:16708–15.
  • [17] Jiang J, Long Y, Hu X, Hu J, Zhu M, Zhou S. A facile microwave-assisted synthesis of mesoporous hydroxyapatite as an efficient adsorbent for Pb2+ adsorption. J Solid State Chem. 2020;289:121491.
  • [18] Thomas D, Su S, Qiu J, Pantoya ML. Microwave synthesis of functionally graded tricalcium phosphate for osteoconduction. Mater Today Commun. 2016;9:47–53.
  • [19] Bulina NV, Chaikina MV, Prosanov IY, Dudina DV. Strontium and silicate co-substituted hydroxyapatite: Mechanochemical synthesis and structural characterization. Mater Sci Eng B. 2020;262:114719.
  • [20] Karlinsey RL, Mackey AC, Walker ER, Frederick KE. Preparation, characterization and in vitro efficacy of an acid-modified β-TCP material for dental hard-tissue remineralization. Acta Biomater. 2010;6:969–78.
  • [21] Cui W, Song Q, Su H, Yang Z, Yang R, Li N. Synergistic effects of Mg-substitution and particle size of chicken eggshells on hydrothermal synthesis of biphasic calcium phosphate nanocrystals. J Mater Sci Technol. 2020;36:27–36.
  • [22] Daryan SH, Khavandi A, Javadpour J. Surface engineered hollow hydroxyapatite microspheres: Hydrothermal synthesis and growth mechanisms. Solid State Sci. 2020;106:106301.
  • [23] Yelten-Yilmaz A, Yilmaz S. Wet chemical precipitation synthesis of hydroxyapatite (HA) powders. Ceram Int. 2018;44:9703–10.
  • [24] Yelten A, Yilmaz S. Various Parameters Affecting the Synthesis of the Hydroxyapatite Powders by the Wet Chemical Precipitation Technique. Mater. Today: Proc. 2016;3:2869–76.
  • [25] Curcio M, Rau JV, Santagata A, Teghil R, Laureti S, De Bonis A. Laser synthesis of iron nanoparticle for Fe doped hydroxyapatite coatings. Mater Chem Phys. 2019;225:365–70.
  • [26] Veerla SC, Kim DR, Kim J, Sohn H, Yang SY. Controlled nanoparticle synthesis of Ag/Fe co-doped hydroxyapatite system for cancer cell treatment. Mater Sci Eng C. 2019;98:311–23.
  • [27] Rau JV, Cacciotti I, De Bonis A, Fosca M, Komlev VS, Latini A, et al. Fe-doped hydroxyapatite coatings for orthopedic and dental implant applications. Appl Surf Sci. 2014;307:301–5.
  • [28] Li B, Xia X, Guo M, Jiang Y, Li Y, Zhang Z, et al. Biological and antibacterial properties of the micronanostructured hydroxyapatite/chitosan coating on titanium. Sci Rep. 2019;9:14052.
  • [29] Zhang H, Shi X, Tian A, Wang L, Liu C. Electrochemical properties of Ti3+ doped Ag-Ti nanotube arrays coated with hydroxyapatite. Appl Surf Sci. 2018;436:579–84.
  • [30] Cullity BD. Elements of X–ray Diffraction. 2nd ed. Addison–Wesley Publishing Company, Massachusetts, 1978.
  • [31] Kaygili O. Synthesis and characterization of Fe-containing biphasic calcium phosphate ceramics. J Aust Ceram Soc. 2019;55:381–5.
  • [32] Ribeiro CC, Gibson L, Barbosa MA. The uptake of titanium ions by hydroxyapatite particles–structural changes and possible mechanisms. Biomaterials, 2006;27(9):1749–61.
  • [33] Kaygili O, Tatar C. The investigation of some physical properties and microstructure of Zn-doped hydroxyapatite bioceramics prepared by sol–gel method. J Sol-gel Sci Technol. 2012;61:296–309.
  • [34] Yang WZ, Zhou DL, Yin GF, Li GD. Surface modification of biphasic calcium phosphate bioceramic powders. Appl Surf Sci. 2008;255:477–9.
  • [35] Garai S, Sinha A. Three dimensional biphasic calcium phosphate nanocomposites for load bearing bioactive bone grafts. Mater Sci Eng C. 2016;59:375–83.
  • [36] Ebrahimi M, Botelho MG, Dorozhkin SV. Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. Mater Sci Eng C. 2017;71:1293-1312.
  • [37] Montañez ND, Estupiñan HA, García SJ, Peña DY. Fabrication and Characterization of Novel Biphasic Calcium Phosphate and Nanosized Hydroxyapatite Derived from Fish Otoliths in Different Composition Ratios. Chem Eng Trans. 2018;64:307-12.
  • [38] Zhang L, Zhang C, Zhang R, Jiang D, Zhu Q, Wang S. Extraction and characterization of HA/β-TCP biphasic calcium phosphate from marine fish. Mater Lett. 2019;236:680–2.
  • [39] Hammood AS, Hassan SS, Alkhafagy MT, Jaber HL. Effect of calcination temperature on characterization of natural hydroxyapatite prepared from carp fish bones. SN Appl Sci. 2019;1:436.
  • [40] Vuong BX. Synthesis and characterization of HA/β-TCP bioceramic powder. Vietnam J Chem. 2018;56(2):152-5.
  • [41] Kaygili O, Vural G, Keser S, Yahia IS, Bulut N, Ates T, et al. Ce/Sm co-doped hydroxyapatites: synthesis, characterization, and band structure calculation, J Aust Ceram Soc. 2021;57:305–17.

Synthesis and Characterization of Fe and Ti Doped Biphasic Calcium Phosphates

Year 2021, , 89 - 94, 31.12.2021
https://doi.org/10.46810/tdfd.885177

Abstract

In this study, the effects of Ti doping on the structural, morphological, and thermal properties of the Fe-based biphasic calcium phosphates have been investigated. X-ray diffraction (XRD) analysis has verified that the-as produced samples have both hydroxyapatite (HAp) and beta-tricalcium phosphate (β-TCP) phases. Besides, it has been seen that the amount of β-TCP phase increases with the increase in Ti doping. Fourier transform infrared (FTIR) spectroscopy results have verified the existence of the characteristic functional groups in the samples. Ti amount affects the morphology. The thermal behaviors of the samples are similar to each other, and all the samples are thermally stable from room temperature to 1000 °C. In this temperature range, the mass losses in the samples are equal to or smaller than 1.63 %.

Project Number

FF.20.16

References

  • [1] Dorozhkin SV. Calcium Orthophosphates in Nature, Biology and Medicine. Materials. 2009;2(2):399-498.
  • [2] Fang J, Li P, Lu X, Fang L, Lü X, Ren F. A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration. Acta Biomater. 2019;88:503-13.
  • [3] Bazin T, Magnaudeix A, Mayet R, Carles P, Julien I, Demourgues A, et al. Sintering and biocompatibility of copper-doped hydroxyapatite bioceramics. Ceram Int. 2021, https://doi.org/10.1016/j.ceramint.2021.01.225.
  • [4] Sharifianjazi F, Esmaeilkhanian A, Moradi M, Pakseresht A, Asl MS, Karimi-Maleh H, et al. Biocompatibility and mechanical properties of pigeon bone waste extracted natural nano-hydroxyapatite for bone tissue engineering. Mater Sci Eng B Solid State Mater Adv Technol. 2021;264:114950.
  • [5] Tamagawa H, Tenkumo T, Sugaya T, Kawanami M. Effect of nano-hydroxyapatite on bone morphogenetic protein-2-induced hard tissue formation and dentin resorption on a dentin surface. Appl Surf Sci. 2012;262:140-5.
  • [6] Singh RP, Singh JP, Singh C, Kaur T, Pal A. Synthesis, characterization and in-vitro bioactivity evaluation of mesoporous Ca10-xFex(PO4)6(OH)2 nanorods-like particles. Ceram Int. 2020;46:12156-64.
  • [7] Chaair H, Labjar H, Britel O. Synthesis of β-tricalcium phosphate. Morphologie. 2017;101:120-4.
  • [8] Arbez B, Libouban H. Behavior of macrophage and osteoblast cell lines in contact with the β-TCP biomaterial (beta-tricalcium phosphate). Morphologie, 2017;101:154-63.
  • [9] Ates T, Dorozhkin SV, Kaygili O, Kom M, Ercan I, Bulut N, et al. The effects of Mn and/or Ni dopants on the in vitro/in vivo performance, structural and magnetic properties of β-tricalcium phosphate bioceramics. Ceram Int. 2019;45:22752–8.
  • [10] Frasnelli M, Pedranz A, Biesuz M, Dire S, Sglavo VM. Flash sintering of Mg-doped tricalcium phosphate (TCP) nanopowders. J Eur Ceram Soc. 2019;39:3883–92.
  • [11] Ruiz-Aguilar C, Olivares-Pinto U, Aguilar-Reyes EA, López-Juárez R, Alfonso I. Characterization of β-tricalcium phosphate powders synthesized by sol–gel and mechanosynthesis. Bol Soc Esp Ceram V. 2018;57:213–20.
  • [12] Tautkus S, Ishikawa K, Ramanauskas R, Kareiva A. Zinc and chromium co-doped calcium hydroxyapatite: Sol-gel synthesis, characterization, behaviour in simulated body fluid and phase transformations. J Solid State Chem. 2020;284:121202.
  • [13] Aghayan MA, Rodríguez MA. Influence of fuels and combustion aids on solution combustion synthesis of bi-phasic calcium phosphates (BCP). Mater Sci Eng C. 2012;32:2464–8.
  • [14] Batista HA, Silva FN, Lisboa HM, Costa ACFM. Modeling and optimization of combustion synthesis for hydroxyapatite production. Ceram Int. 2020;46:11638–46.
  • [15] An GH, Wang HJ, Kim B-H, Jeong YG, Choa YH. Fabrication and characterization of a hydroxyapatite nanopowder by ultrasonic spray pyrolysis with salt-assisted decomposition. Mater Sci Eng A. 2007;449–451:821–4.
  • [16] Chou YJ, Ningsih HS, Shih S-J. Preparation, characterization and investigation of antibacterial silver-zinc co-doped β-tricalcium phosphate by spray pyrolysis. Ceram Int. 2020;46:16708–15.
  • [17] Jiang J, Long Y, Hu X, Hu J, Zhu M, Zhou S. A facile microwave-assisted synthesis of mesoporous hydroxyapatite as an efficient adsorbent for Pb2+ adsorption. J Solid State Chem. 2020;289:121491.
  • [18] Thomas D, Su S, Qiu J, Pantoya ML. Microwave synthesis of functionally graded tricalcium phosphate for osteoconduction. Mater Today Commun. 2016;9:47–53.
  • [19] Bulina NV, Chaikina MV, Prosanov IY, Dudina DV. Strontium and silicate co-substituted hydroxyapatite: Mechanochemical synthesis and structural characterization. Mater Sci Eng B. 2020;262:114719.
  • [20] Karlinsey RL, Mackey AC, Walker ER, Frederick KE. Preparation, characterization and in vitro efficacy of an acid-modified β-TCP material for dental hard-tissue remineralization. Acta Biomater. 2010;6:969–78.
  • [21] Cui W, Song Q, Su H, Yang Z, Yang R, Li N. Synergistic effects of Mg-substitution and particle size of chicken eggshells on hydrothermal synthesis of biphasic calcium phosphate nanocrystals. J Mater Sci Technol. 2020;36:27–36.
  • [22] Daryan SH, Khavandi A, Javadpour J. Surface engineered hollow hydroxyapatite microspheres: Hydrothermal synthesis and growth mechanisms. Solid State Sci. 2020;106:106301.
  • [23] Yelten-Yilmaz A, Yilmaz S. Wet chemical precipitation synthesis of hydroxyapatite (HA) powders. Ceram Int. 2018;44:9703–10.
  • [24] Yelten A, Yilmaz S. Various Parameters Affecting the Synthesis of the Hydroxyapatite Powders by the Wet Chemical Precipitation Technique. Mater. Today: Proc. 2016;3:2869–76.
  • [25] Curcio M, Rau JV, Santagata A, Teghil R, Laureti S, De Bonis A. Laser synthesis of iron nanoparticle for Fe doped hydroxyapatite coatings. Mater Chem Phys. 2019;225:365–70.
  • [26] Veerla SC, Kim DR, Kim J, Sohn H, Yang SY. Controlled nanoparticle synthesis of Ag/Fe co-doped hydroxyapatite system for cancer cell treatment. Mater Sci Eng C. 2019;98:311–23.
  • [27] Rau JV, Cacciotti I, De Bonis A, Fosca M, Komlev VS, Latini A, et al. Fe-doped hydroxyapatite coatings for orthopedic and dental implant applications. Appl Surf Sci. 2014;307:301–5.
  • [28] Li B, Xia X, Guo M, Jiang Y, Li Y, Zhang Z, et al. Biological and antibacterial properties of the micronanostructured hydroxyapatite/chitosan coating on titanium. Sci Rep. 2019;9:14052.
  • [29] Zhang H, Shi X, Tian A, Wang L, Liu C. Electrochemical properties of Ti3+ doped Ag-Ti nanotube arrays coated with hydroxyapatite. Appl Surf Sci. 2018;436:579–84.
  • [30] Cullity BD. Elements of X–ray Diffraction. 2nd ed. Addison–Wesley Publishing Company, Massachusetts, 1978.
  • [31] Kaygili O. Synthesis and characterization of Fe-containing biphasic calcium phosphate ceramics. J Aust Ceram Soc. 2019;55:381–5.
  • [32] Ribeiro CC, Gibson L, Barbosa MA. The uptake of titanium ions by hydroxyapatite particles–structural changes and possible mechanisms. Biomaterials, 2006;27(9):1749–61.
  • [33] Kaygili O, Tatar C. The investigation of some physical properties and microstructure of Zn-doped hydroxyapatite bioceramics prepared by sol–gel method. J Sol-gel Sci Technol. 2012;61:296–309.
  • [34] Yang WZ, Zhou DL, Yin GF, Li GD. Surface modification of biphasic calcium phosphate bioceramic powders. Appl Surf Sci. 2008;255:477–9.
  • [35] Garai S, Sinha A. Three dimensional biphasic calcium phosphate nanocomposites for load bearing bioactive bone grafts. Mater Sci Eng C. 2016;59:375–83.
  • [36] Ebrahimi M, Botelho MG, Dorozhkin SV. Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. Mater Sci Eng C. 2017;71:1293-1312.
  • [37] Montañez ND, Estupiñan HA, García SJ, Peña DY. Fabrication and Characterization of Novel Biphasic Calcium Phosphate and Nanosized Hydroxyapatite Derived from Fish Otoliths in Different Composition Ratios. Chem Eng Trans. 2018;64:307-12.
  • [38] Zhang L, Zhang C, Zhang R, Jiang D, Zhu Q, Wang S. Extraction and characterization of HA/β-TCP biphasic calcium phosphate from marine fish. Mater Lett. 2019;236:680–2.
  • [39] Hammood AS, Hassan SS, Alkhafagy MT, Jaber HL. Effect of calcination temperature on characterization of natural hydroxyapatite prepared from carp fish bones. SN Appl Sci. 2019;1:436.
  • [40] Vuong BX. Synthesis and characterization of HA/β-TCP bioceramic powder. Vietnam J Chem. 2018;56(2):152-5.
  • [41] Kaygili O, Vural G, Keser S, Yahia IS, Bulut N, Ates T, et al. Ce/Sm co-doped hydroxyapatites: synthesis, characterization, and band structure calculation, J Aust Ceram Soc. 2021;57:305–17.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Tankut Ateş 0000-0002-4519-2953

Turan Ince 0000-0001-7885-1882

Serdar Acar 0000-0001-8172-6660

Omer Kaygılı 0000-0002-2321-1455

Niyazi Bulut 0000-0003-2863-7700

Serhat Keser 0000-0002-9678-1053

Süleyman Köytepe 0000-0002-4788-278X

Project Number FF.20.16
Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Ateş, T., Ince, T., Acar, S., Kaygılı, O., et al. (2021). Fe ve Ti katkılı Çift Fazlı Kalsiyum Fosfatların Sentez ve Karakterizasyonu. Türk Doğa Ve Fen Dergisi, 10(2), 89-94. https://doi.org/10.46810/tdfd.885177
AMA Ateş T, Ince T, Acar S, Kaygılı O, Bulut N, Keser S, Köytepe S. Fe ve Ti katkılı Çift Fazlı Kalsiyum Fosfatların Sentez ve Karakterizasyonu. TDFD. December 2021;10(2):89-94. doi:10.46810/tdfd.885177
Chicago Ateş, Tankut, Turan Ince, Serdar Acar, Omer Kaygılı, Niyazi Bulut, Serhat Keser, and Süleyman Köytepe. “Fe Ve Ti katkılı Çift Fazlı Kalsiyum Fosfatların Sentez Ve Karakterizasyonu”. Türk Doğa Ve Fen Dergisi 10, no. 2 (December 2021): 89-94. https://doi.org/10.46810/tdfd.885177.
EndNote Ateş T, Ince T, Acar S, Kaygılı O, Bulut N, Keser S, Köytepe S (December 1, 2021) Fe ve Ti katkılı Çift Fazlı Kalsiyum Fosfatların Sentez ve Karakterizasyonu. Türk Doğa ve Fen Dergisi 10 2 89–94.
IEEE T. Ateş, T. Ince, S. Acar, O. Kaygılı, N. Bulut, S. Keser, and S. Köytepe, “Fe ve Ti katkılı Çift Fazlı Kalsiyum Fosfatların Sentez ve Karakterizasyonu”, TDFD, vol. 10, no. 2, pp. 89–94, 2021, doi: 10.46810/tdfd.885177.
ISNAD Ateş, Tankut et al. “Fe Ve Ti katkılı Çift Fazlı Kalsiyum Fosfatların Sentez Ve Karakterizasyonu”. Türk Doğa ve Fen Dergisi 10/2 (December 2021), 89-94. https://doi.org/10.46810/tdfd.885177.
JAMA Ateş T, Ince T, Acar S, Kaygılı O, Bulut N, Keser S, Köytepe S. Fe ve Ti katkılı Çift Fazlı Kalsiyum Fosfatların Sentez ve Karakterizasyonu. TDFD. 2021;10:89–94.
MLA Ateş, Tankut et al. “Fe Ve Ti katkılı Çift Fazlı Kalsiyum Fosfatların Sentez Ve Karakterizasyonu”. Türk Doğa Ve Fen Dergisi, vol. 10, no. 2, 2021, pp. 89-94, doi:10.46810/tdfd.885177.
Vancouver Ateş T, Ince T, Acar S, Kaygılı O, Bulut N, Keser S, Köytepe S. Fe ve Ti katkılı Çift Fazlı Kalsiyum Fosfatların Sentez ve Karakterizasyonu. TDFD. 2021;10(2):89-94.