Research Article
BibTex RIS Cite

Dipeptit Kaplı Manyetik Fe3O4 Nanopartikülünün Termal ve Dielektrik Özelliklerinin İncelenmesi

Year 2021, , 259 - 268, 25.06.2021
https://doi.org/10.46810/tdfd.896762

Abstract

Bu çalışmada Manyetik Fe3O4 nanopartikülün yüzeyinin biyolojik olarak aktif ikincil bir katman ile modifiye edilmesi ve termal, antimikrobiyal ve dielektrik özellikerinin incelenmesi amaçlanmıştır. Birlikte çöktürme yöntemiyle manyetik Fe3O4 nanopartikülleri hazırlanmış ve 3-aminopropiltrimetoksisilan (APTS) ile modifiye edilmiştir. Daha sonra sitein ve alanin amino asitlerinden yeni bir amino asit konjugatı hazırlanmış ve Fe3O4@APTS manyetik nanopartikülüne peptit bağı ile bağlanmıştır. Bileşiklerin yapısı FT-IR, 1H-NMR ve 13C-NMR teknikleri kullanılarak karakterize edildi. Termal özellikleri termogravimetrik analiz (TGA) yöntemi kullanılarak oda sıcaklığından 600 oC’ye kadar azot atmosferinde incelendi. Dielektrik özellikler alternatif akıma (AC) bağlı olarak 100Hz ve 20 kHz frekans aralığında oda sıcaklığında ölçüldü.

References

  • [1] Fotticchia T, Vecchione R, Scognamiglio PL, Guarnieri D, Calcagno V, Natale CD, Attanasio C, Gregorio MD, Cicco CD, Quagliariello V, Maurea N, Barbieri A, Arra C, Raiola L, Iaffaioli RV, Netti PA. Enhanced Drug Delivery into Cell Cytosol via Glycoprotein H-Derived Peptide Conjugated Nanoemulsions. ACS Nano. 2017;11: 9802−9813.
  • [2] Zhang M, Hong S, Cai Q, Zhang M, Chen J, Zhang X, Icon O, Xu JC. Transcriptional control of the MUC16 promoter facilitates follicle-stimulating hormone peptide-conjugated shRNA nanoparticle-mediated inhibition of ovarian carcinoma in vivo. Drug Delivery. 2018; 25:797−806.
  • [3] Peterson E, Joseph C, Peterson H, Bouwman R, Tang S, Cannon J, Sinniah K, Choi SK. Measuring the Adhesion Forces for the Multivalent Binding of Vancomycin-conjugated Dendrimer to Bacterial Cell-Wall Peptide. Langmuir. 2018; 34:7135−7146.
  • [4] Lee SG, Kim CH, Sung SW, Lee ES, Goh MS, Yoon HY, Kang MJ, Lee S, Choi YW. RIPL peptide-conjugated nanostructured lipid carriers for enhanced intracellular drug delivery to hepsin-expressing cancer cells. Int. J. Nanomed. 2018; 13:3263− 3278.
  • [5] Frutos S, Hernandez JL, Otero A, Calvis C, Adan J, Mitjans F, Vila-Perello M. Site-Specific Antibody Drug Conjugates ́ Using Streamlined Expressed Protein Ligation. Bioconjugate Chem. 2018;29: 3503−3508.
  • [6] Blaskovich MAT, Hansford KA, Cooper MA. et al. Protein-inspired antibiotics active against vancomycin-and daptomycin-resistant bacteria. Nat. Commun. 2018;9: 22.
  • [7] Gadek TR, Nicholas JB. Small molecule antagonists of proteins. Biochem. Pharmacol. 2003; 65:1-8.
  • [8] Maleki A, Taheri-Ledari R, Rahimi J, Soroushnejad M, Hajizadeh Z. Facile Peptide Bond Formation: Effective Interplay between Isothiazolone Rings and Silanol Groups at Silver/Iron Oxide Nanocomposite Surfaces. ACS Omega. 2019;4(6):10629-10639.
  • [9] Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 2001;53(2):283-318.
  • [10] Schulz DL, Curtis CJ, Ginley DS. Surface Chemistry of Copper Nanoparticles and Direct Spray Printing of Hybrid Particle/Metallorganic Inks. Electrochem. Solid-State Lett. 2001;4(8):C58-C61.
  • [11] Panyam J and Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. 2003;55(3):329-47.
  • [12] Singh K, Ohlan A, Bakhshi AK, Dhawan SK. Synthesis of conducting ferromagnetic nanocomposite with improved microwave absorption properties. 2010; 119:201-207.
  • [13] Chi Y, Yuan Q, Li Y, Tu J, Zhao L, Li N, Li X. Synthesis of Fe3O4@SiO2–Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol. J Colloid Interface Sci. 2012;383(1):96-102.
  • [14] Lien YH and Wu TM. Preparation and characterization of thermosensitive polymers grafted onto silica-coated iron oxide nanoparticles. 2008;326(2):517-521.
  • [15] Yamaura M, Camilo RL, Sampaio LC, Toma HE et al. Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. 2004; 279:210-217.
  • [16] Hosseini F, Sadjadi MS, Farhadyar N. Fe3O4 nanoparticles modified with APTES as the carrier for (+)-(S)-2-(6-methoxynaphthalen-2-yl) propanoic acid (Naproxen) and (RS) 2-(3-benzoylphenyl)-propionic acid (Ketoprofen) drug. Orient. J. Chem. 2014;30(4).
  • [17] Deng H, Li X, Peng Q, Wang X, Chen J, Li Y. Monodisperse magnetic single-crystal ferrite microspheres. 2005; 44(18):2782-5.
  • [18] Garrett CE, Jiang X, Prasad K, Repic O. New observations on peptide bond formation using CDMT. Tetrahedron Lett. 2002;43(23):4161-4165.
  • [19] Theodorou V, Skobridis K, Tzakos AG, Ragoussis V. A simple method for the alkaline hydrolysis of esters. 2007;48(46):8230-8233.
  • [20]Seçkin T, Vural S, Köytepe S. Preparation and structural properties of Fe3O4-polyimide hybrid nanocomposites. Polymer Bulletin. 2010;64(2)115-126.
  • [21] Gurgenç T, Biryan F. Production, thermal and dielectrical properties of Ag-doped nano-strontium apatite and nano h-BN filled poly(4-(3-(2,3,4-trimethoxyphenyl) acryloyl) phenyl acrylate) composites. J Polym Res. 2020;27:194.
  • [22] Gurgenç T. Structural characterization and dielectrical properties of Ag-doped nano-strontium apatite particles produced by hydrothermal method. J. Mol. Struct. 2021;1223:128990.
  • [23]Manjunath A, Deepa T, Supreetha NK, Irfan M. Studies on AC Electrical Conductivity and Dielectric Properties of PVA/NH4NO3 Solid Polymer Electrolyte Films Advances in Materials Physics and Chemistry. 2015;5:295-301.
Year 2021, , 259 - 268, 25.06.2021
https://doi.org/10.46810/tdfd.896762

Abstract

References

  • [1] Fotticchia T, Vecchione R, Scognamiglio PL, Guarnieri D, Calcagno V, Natale CD, Attanasio C, Gregorio MD, Cicco CD, Quagliariello V, Maurea N, Barbieri A, Arra C, Raiola L, Iaffaioli RV, Netti PA. Enhanced Drug Delivery into Cell Cytosol via Glycoprotein H-Derived Peptide Conjugated Nanoemulsions. ACS Nano. 2017;11: 9802−9813.
  • [2] Zhang M, Hong S, Cai Q, Zhang M, Chen J, Zhang X, Icon O, Xu JC. Transcriptional control of the MUC16 promoter facilitates follicle-stimulating hormone peptide-conjugated shRNA nanoparticle-mediated inhibition of ovarian carcinoma in vivo. Drug Delivery. 2018; 25:797−806.
  • [3] Peterson E, Joseph C, Peterson H, Bouwman R, Tang S, Cannon J, Sinniah K, Choi SK. Measuring the Adhesion Forces for the Multivalent Binding of Vancomycin-conjugated Dendrimer to Bacterial Cell-Wall Peptide. Langmuir. 2018; 34:7135−7146.
  • [4] Lee SG, Kim CH, Sung SW, Lee ES, Goh MS, Yoon HY, Kang MJ, Lee S, Choi YW. RIPL peptide-conjugated nanostructured lipid carriers for enhanced intracellular drug delivery to hepsin-expressing cancer cells. Int. J. Nanomed. 2018; 13:3263− 3278.
  • [5] Frutos S, Hernandez JL, Otero A, Calvis C, Adan J, Mitjans F, Vila-Perello M. Site-Specific Antibody Drug Conjugates ́ Using Streamlined Expressed Protein Ligation. Bioconjugate Chem. 2018;29: 3503−3508.
  • [6] Blaskovich MAT, Hansford KA, Cooper MA. et al. Protein-inspired antibiotics active against vancomycin-and daptomycin-resistant bacteria. Nat. Commun. 2018;9: 22.
  • [7] Gadek TR, Nicholas JB. Small molecule antagonists of proteins. Biochem. Pharmacol. 2003; 65:1-8.
  • [8] Maleki A, Taheri-Ledari R, Rahimi J, Soroushnejad M, Hajizadeh Z. Facile Peptide Bond Formation: Effective Interplay between Isothiazolone Rings and Silanol Groups at Silver/Iron Oxide Nanocomposite Surfaces. ACS Omega. 2019;4(6):10629-10639.
  • [9] Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 2001;53(2):283-318.
  • [10] Schulz DL, Curtis CJ, Ginley DS. Surface Chemistry of Copper Nanoparticles and Direct Spray Printing of Hybrid Particle/Metallorganic Inks. Electrochem. Solid-State Lett. 2001;4(8):C58-C61.
  • [11] Panyam J and Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. 2003;55(3):329-47.
  • [12] Singh K, Ohlan A, Bakhshi AK, Dhawan SK. Synthesis of conducting ferromagnetic nanocomposite with improved microwave absorption properties. 2010; 119:201-207.
  • [13] Chi Y, Yuan Q, Li Y, Tu J, Zhao L, Li N, Li X. Synthesis of Fe3O4@SiO2–Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol. J Colloid Interface Sci. 2012;383(1):96-102.
  • [14] Lien YH and Wu TM. Preparation and characterization of thermosensitive polymers grafted onto silica-coated iron oxide nanoparticles. 2008;326(2):517-521.
  • [15] Yamaura M, Camilo RL, Sampaio LC, Toma HE et al. Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. 2004; 279:210-217.
  • [16] Hosseini F, Sadjadi MS, Farhadyar N. Fe3O4 nanoparticles modified with APTES as the carrier for (+)-(S)-2-(6-methoxynaphthalen-2-yl) propanoic acid (Naproxen) and (RS) 2-(3-benzoylphenyl)-propionic acid (Ketoprofen) drug. Orient. J. Chem. 2014;30(4).
  • [17] Deng H, Li X, Peng Q, Wang X, Chen J, Li Y. Monodisperse magnetic single-crystal ferrite microspheres. 2005; 44(18):2782-5.
  • [18] Garrett CE, Jiang X, Prasad K, Repic O. New observations on peptide bond formation using CDMT. Tetrahedron Lett. 2002;43(23):4161-4165.
  • [19] Theodorou V, Skobridis K, Tzakos AG, Ragoussis V. A simple method for the alkaline hydrolysis of esters. 2007;48(46):8230-8233.
  • [20]Seçkin T, Vural S, Köytepe S. Preparation and structural properties of Fe3O4-polyimide hybrid nanocomposites. Polymer Bulletin. 2010;64(2)115-126.
  • [21] Gurgenç T, Biryan F. Production, thermal and dielectrical properties of Ag-doped nano-strontium apatite and nano h-BN filled poly(4-(3-(2,3,4-trimethoxyphenyl) acryloyl) phenyl acrylate) composites. J Polym Res. 2020;27:194.
  • [22] Gurgenç T. Structural characterization and dielectrical properties of Ag-doped nano-strontium apatite particles produced by hydrothermal method. J. Mol. Struct. 2021;1223:128990.
  • [23]Manjunath A, Deepa T, Supreetha NK, Irfan M. Studies on AC Electrical Conductivity and Dielectric Properties of PVA/NH4NO3 Solid Polymer Electrolyte Films Advances in Materials Physics and Chemistry. 2015;5:295-301.
There are 23 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Eray Çalışkan 0000-0003-2399-4100

Fatih Biryan 0000-0001-9198-3329

Kenan Koran 0000-0002-2218-7211

Publication Date June 25, 2021
Published in Issue Year 2021

Cite

APA Çalışkan, E., Biryan, F., & Koran, K. (2021). Dipeptit Kaplı Manyetik Fe3O4 Nanopartikülünün Termal ve Dielektrik Özelliklerinin İncelenmesi. Türk Doğa Ve Fen Dergisi, 10(1), 259-268. https://doi.org/10.46810/tdfd.896762
AMA Çalışkan E, Biryan F, Koran K. Dipeptit Kaplı Manyetik Fe3O4 Nanopartikülünün Termal ve Dielektrik Özelliklerinin İncelenmesi. TDFD. June 2021;10(1):259-268. doi:10.46810/tdfd.896762
Chicago Çalışkan, Eray, Fatih Biryan, and Kenan Koran. “Dipeptit Kaplı Manyetik Fe3O4 Nanopartikülünün Termal Ve Dielektrik Özelliklerinin İncelenmesi”. Türk Doğa Ve Fen Dergisi 10, no. 1 (June 2021): 259-68. https://doi.org/10.46810/tdfd.896762.
EndNote Çalışkan E, Biryan F, Koran K (June 1, 2021) Dipeptit Kaplı Manyetik Fe3O4 Nanopartikülünün Termal ve Dielektrik Özelliklerinin İncelenmesi. Türk Doğa ve Fen Dergisi 10 1 259–268.
IEEE E. Çalışkan, F. Biryan, and K. Koran, “Dipeptit Kaplı Manyetik Fe3O4 Nanopartikülünün Termal ve Dielektrik Özelliklerinin İncelenmesi”, TDFD, vol. 10, no. 1, pp. 259–268, 2021, doi: 10.46810/tdfd.896762.
ISNAD Çalışkan, Eray et al. “Dipeptit Kaplı Manyetik Fe3O4 Nanopartikülünün Termal Ve Dielektrik Özelliklerinin İncelenmesi”. Türk Doğa ve Fen Dergisi 10/1 (June 2021), 259-268. https://doi.org/10.46810/tdfd.896762.
JAMA Çalışkan E, Biryan F, Koran K. Dipeptit Kaplı Manyetik Fe3O4 Nanopartikülünün Termal ve Dielektrik Özelliklerinin İncelenmesi. TDFD. 2021;10:259–268.
MLA Çalışkan, Eray et al. “Dipeptit Kaplı Manyetik Fe3O4 Nanopartikülünün Termal Ve Dielektrik Özelliklerinin İncelenmesi”. Türk Doğa Ve Fen Dergisi, vol. 10, no. 1, 2021, pp. 259-68, doi:10.46810/tdfd.896762.
Vancouver Çalışkan E, Biryan F, Koran K. Dipeptit Kaplı Manyetik Fe3O4 Nanopartikülünün Termal ve Dielektrik Özelliklerinin İncelenmesi. TDFD. 2021;10(1):259-68.