Research Article
BibTex RIS Cite

Na2O, silika modülü, su/bağlayıcı oranı ve yaşlanmanın cüruf tabanlı geopolimerlerin basınç mukavemetinde olan etkileri

Year 2017, Volume: 6 Issue: 2, 26 - 31, 16.12.2017

Abstract



Geopolimerler, Portland çimentosu ve Portland çimentolu
betonlar için puzolanların aktivasyonundan üretilen alternatif bağlayıcılardır.
Malzeme özelliklerinin güçlendirilmesi, çevre dostu olması ve çimento yerine
üretilebilmesi için bu çalışmada ferrokrom cürufu tabanlı geopolimerinin
mekanik özellikleri araştırılmıştır. Bu çalışmada, ferrokrom cürufunu aktive
edebilmek için, Na2O yüzdesi, silika modülü ve su/bağlayıcı oranlarına göre
dokuz farklı seride geopolimer karışımı hazırlanmıştır. Test sonuçları,
üretilen geopolimerlerin basınç dayanımının yeterince yüksek olduğunu ve
yapısal bir malzeme olarak kullanılabileceğini göstermiştir.

References

  • [1] M. Weil, K. Dombrowski, and A. Buchawald, “Life-cycle analysis of geopolymers,” Geopolymers, structure, processing, properties and applications, ISBN-13, vol. 978, no. 1, pp. 84569, 2009.
  • [2] Z. Li, Z. Ding, and Y. Zhang, "Development of sustainable cementitious materials." pp. 55-76.
  • [3] K. A. Komnitsas, “Potential of geopolymer technology towards green buildings and sustainable cities,” 2011 International Conference on Green Buildings and Sustainable Cities, vol. 21, no. Supplement C, pp. 1023-1032, 2011/01/01/, 2011.
  • [4] F. Pacheco-Torgal, J. Castro-Gomes, and S. Jalali, “Alkali-activated binders: A review. Part 2. About materials and binders manufacture,” Construction and Building Materials, vol. 22, no. 7, pp. 1315-1322, Jul, 2008.
  • [5] D. L. Y. Kong, and J. G. Sanjayan, “Effect of elevated temperatures on geopolymer paste, mortar and concrete,” Cement and Concrete Research, vol. 40, no. 2, pp. 334-339, Feb, 2010.
  • [6] J. Malolepszy, “Activation of synthetic melitite slags by alkalis,” VIH Intem. Congr. Chem. Cem.(Rio de Janeiro), vol. 4, pp. 104-107, 1986.
  • [7] A. Saglik, “Alkali-silica reactivity and activation of ground perlite containing cementitious mixtures,” MSc, Graduate School of Natural and Applied Sciences of METU, 2009.
  • [8] A. Allahverdi, K. Mehrpour, and E. N. Kani, “Taftan pozzolan-based geopolymer cement,” IUST International Journal of Engineering Science, vol. 19, no. 3, pp. 1-5, 2008.
  • [9] T. Bakharev, “Geopolymeric materials prepared using Class F fly ash and elevated temperature curing,” Cement and Concrete Research, vol. 35, no. 6, pp. 1224-1232, 2005/06/01/, 2005.
  • [10] T. Bakharev, “Resistance of geopolymer materials to acid attack,” Cement and Concrete Research, vol. 35, no. 4, pp. 658-670, 2005.
  • [11] T. Bakharev, “Durability of geopolymer materials in sodium and magnesium sulfate solutions,” Cement and Concrete Research, vol. 35, no. 6, pp. 1233-1246, 2005/06/01/, 2005.
  • [12] S. Thokchom, P. Ghosh, and S. Ghosh, “Resistance of fly ash based geopolymer mortars in sulfuric acid,” arPN Journal of engineering and applied Sciences, vol. 4, 2009.
  • [13] D. SureshThokchom, P. Ghosh, and S. Ghosh, “Acid resistance of fly ash based geopolymer mortars,” Int. J. of Recent Trends in Engineering and Technology, vol. 1, no. 6, 2009.
  • [14] A. Allahverdi, and F. Skvara, “Sulfuric acid attack on hardened paste of geopolymer cements-Part 1. Mechanism of corrosion at relatively high concentrations,” Ceramics Silikaty, vol. 49, no. 4, pp. 225, 2005.
  • [15] A. Allahverdi, and F. Skvara, “Nitric acid attack on hardened paste of geopolymeric cements - Part 1,” Ceramics-Silikaty, vol. 45, no. 3, pp. 81-88, 2001.
  • [16] A. Allahverdi, and F. Skvara, “Nitric acid attack on hardened paste of geopolymeric cements - Part 2,” Ceramics-Silikaty, vol. 45, no. 4, pp. 143-149, 2001.
  • [17] P. Duxson, A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. van Deventer, “Geopolymer technology: the current state of the art,” Journal of Materials Science, vol. 42, no. 9, pp. 2917-2933, May 01, 2007.
  • [18] B. L. Damineli, F. M. Kemeid, P. S. Aguiar, and V. M. John, “Measuring the eco-efficiency of cement use,” Cement and Concrete Composites, vol. 32, no. 8, pp. 555-562, 2010/09/01/, 2010.
  • [19] C. Meyer, “The greening of the concrete industry,” Cement and Concrete Composites, vol. 31, no. 8, pp. 601-605, 2009/09/01/, 2009.
  • [20] E. Luga, and C. D. Atis, “Strength Properties of Slag/Fly Ash Blends Activated with Sodium Metasilicate and Sodium Hydroxide+ Silica Fume,” Periodica Polytechnica. Civil Engineering, vol. 60, no. 2, pp. 223, 2016.
  • [21] M. Komljenović, Z. Baščarević, and V. Bradić, “Mechanical and microstructural properties of alkali-activated fly ash geopolymers,” Journal of Hazardous Materials, vol. 181, no. 1, pp. 35-42, 2010/09/15/, 2010.
  • [22] K. Anuar, A. Ridzuan, and S. Ismail, “Strength characteristics of geopolymer concrete containing recycled concrete aggregate,” International Journal of Civil & Environmental Engineering, 2011.
  • [23] R. Demirboga, and R. Gul, “The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete,” Cement and Concrete Research, vol. 33, no. 5, pp. 723-727, May, 2003.
  • [24] M. Shariq, J. Prasad, and H. Abbas, “Effect of GGBFS on age dependent static modulus of elasticity of concrete,” Construction and Building Materials, vol. 41, no. Supplement C, pp. 411-418, 2013/04/01/, 2013.
  • [25] D. Bondar, M. Khodaparast, and N. Hassani, Geo-polymer concrete and its applications, 2011.

The effects of Na2O, silica modulus, water/binder and aging on compressive strength of ferrochrome slag based geopolymers

Year 2017, Volume: 6 Issue: 2, 26 - 31, 16.12.2017

Abstract



Geopolymers are alternatives for ordinary Portland cement concrete that
are made from pozzolans activation. To enhance material greenness and produce
alternative binders as a geopolymer, mechanical properties of  ferrochrome slag geopolymer has been
investigated in this study and to identify the best geopolymer mix ratios,
varying silica modulus , water/binder and Na2O content have been
investigated.
Hence nine series of
geopolymer pastes differing in Na2O content, silica modulus
and w/b ratios were manufactured to activating ferrochrome slag in
this study. Test results indicated that the produced geopolymers compressive
strength were high enough and can be used as a structural material.




References

  • [1] M. Weil, K. Dombrowski, and A. Buchawald, “Life-cycle analysis of geopolymers,” Geopolymers, structure, processing, properties and applications, ISBN-13, vol. 978, no. 1, pp. 84569, 2009.
  • [2] Z. Li, Z. Ding, and Y. Zhang, "Development of sustainable cementitious materials." pp. 55-76.
  • [3] K. A. Komnitsas, “Potential of geopolymer technology towards green buildings and sustainable cities,” 2011 International Conference on Green Buildings and Sustainable Cities, vol. 21, no. Supplement C, pp. 1023-1032, 2011/01/01/, 2011.
  • [4] F. Pacheco-Torgal, J. Castro-Gomes, and S. Jalali, “Alkali-activated binders: A review. Part 2. About materials and binders manufacture,” Construction and Building Materials, vol. 22, no. 7, pp. 1315-1322, Jul, 2008.
  • [5] D. L. Y. Kong, and J. G. Sanjayan, “Effect of elevated temperatures on geopolymer paste, mortar and concrete,” Cement and Concrete Research, vol. 40, no. 2, pp. 334-339, Feb, 2010.
  • [6] J. Malolepszy, “Activation of synthetic melitite slags by alkalis,” VIH Intem. Congr. Chem. Cem.(Rio de Janeiro), vol. 4, pp. 104-107, 1986.
  • [7] A. Saglik, “Alkali-silica reactivity and activation of ground perlite containing cementitious mixtures,” MSc, Graduate School of Natural and Applied Sciences of METU, 2009.
  • [8] A. Allahverdi, K. Mehrpour, and E. N. Kani, “Taftan pozzolan-based geopolymer cement,” IUST International Journal of Engineering Science, vol. 19, no. 3, pp. 1-5, 2008.
  • [9] T. Bakharev, “Geopolymeric materials prepared using Class F fly ash and elevated temperature curing,” Cement and Concrete Research, vol. 35, no. 6, pp. 1224-1232, 2005/06/01/, 2005.
  • [10] T. Bakharev, “Resistance of geopolymer materials to acid attack,” Cement and Concrete Research, vol. 35, no. 4, pp. 658-670, 2005.
  • [11] T. Bakharev, “Durability of geopolymer materials in sodium and magnesium sulfate solutions,” Cement and Concrete Research, vol. 35, no. 6, pp. 1233-1246, 2005/06/01/, 2005.
  • [12] S. Thokchom, P. Ghosh, and S. Ghosh, “Resistance of fly ash based geopolymer mortars in sulfuric acid,” arPN Journal of engineering and applied Sciences, vol. 4, 2009.
  • [13] D. SureshThokchom, P. Ghosh, and S. Ghosh, “Acid resistance of fly ash based geopolymer mortars,” Int. J. of Recent Trends in Engineering and Technology, vol. 1, no. 6, 2009.
  • [14] A. Allahverdi, and F. Skvara, “Sulfuric acid attack on hardened paste of geopolymer cements-Part 1. Mechanism of corrosion at relatively high concentrations,” Ceramics Silikaty, vol. 49, no. 4, pp. 225, 2005.
  • [15] A. Allahverdi, and F. Skvara, “Nitric acid attack on hardened paste of geopolymeric cements - Part 1,” Ceramics-Silikaty, vol. 45, no. 3, pp. 81-88, 2001.
  • [16] A. Allahverdi, and F. Skvara, “Nitric acid attack on hardened paste of geopolymeric cements - Part 2,” Ceramics-Silikaty, vol. 45, no. 4, pp. 143-149, 2001.
  • [17] P. Duxson, A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. van Deventer, “Geopolymer technology: the current state of the art,” Journal of Materials Science, vol. 42, no. 9, pp. 2917-2933, May 01, 2007.
  • [18] B. L. Damineli, F. M. Kemeid, P. S. Aguiar, and V. M. John, “Measuring the eco-efficiency of cement use,” Cement and Concrete Composites, vol. 32, no. 8, pp. 555-562, 2010/09/01/, 2010.
  • [19] C. Meyer, “The greening of the concrete industry,” Cement and Concrete Composites, vol. 31, no. 8, pp. 601-605, 2009/09/01/, 2009.
  • [20] E. Luga, and C. D. Atis, “Strength Properties of Slag/Fly Ash Blends Activated with Sodium Metasilicate and Sodium Hydroxide+ Silica Fume,” Periodica Polytechnica. Civil Engineering, vol. 60, no. 2, pp. 223, 2016.
  • [21] M. Komljenović, Z. Baščarević, and V. Bradić, “Mechanical and microstructural properties of alkali-activated fly ash geopolymers,” Journal of Hazardous Materials, vol. 181, no. 1, pp. 35-42, 2010/09/15/, 2010.
  • [22] K. Anuar, A. Ridzuan, and S. Ismail, “Strength characteristics of geopolymer concrete containing recycled concrete aggregate,” International Journal of Civil & Environmental Engineering, 2011.
  • [23] R. Demirboga, and R. Gul, “The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete,” Cement and Concrete Research, vol. 33, no. 5, pp. 723-727, May, 2003.
  • [24] M. Shariq, J. Prasad, and H. Abbas, “Effect of GGBFS on age dependent static modulus of elasticity of concrete,” Construction and Building Materials, vol. 41, no. Supplement C, pp. 411-418, 2013/04/01/, 2013.
  • [25] D. Bondar, M. Khodaparast, and N. Hassani, Geo-polymer concrete and its applications, 2011.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mehrzad Mohabbi Yadollahi This is me

Sadık Varolgüneş

Fethi İşsever

Publication Date December 16, 2017
Published in Issue Year 2017 Volume: 6 Issue: 2

Cite

APA Yadollahi, M. M., Varolgüneş, S., & İşsever, F. (2017). Na2O, silika modülü, su/bağlayıcı oranı ve yaşlanmanın cüruf tabanlı geopolimerlerin basınç mukavemetinde olan etkileri. Türk Doğa Ve Fen Dergisi, 6(2), 26-31.
AMA Yadollahi MM, Varolgüneş S, İşsever F. Na2O, silika modülü, su/bağlayıcı oranı ve yaşlanmanın cüruf tabanlı geopolimerlerin basınç mukavemetinde olan etkileri. TJNS. December 2017;6(2):26-31.
Chicago Yadollahi, Mehrzad Mohabbi, Sadık Varolgüneş, and Fethi İşsever. “Na2O, Silika modülü, su/Bağlayıcı Oranı Ve yaşlanmanın cüruf Tabanlı Geopolimerlerin basınç Mukavemetinde Olan Etkileri”. Türk Doğa Ve Fen Dergisi 6, no. 2 (December 2017): 26-31.
EndNote Yadollahi MM, Varolgüneş S, İşsever F (December 1, 2017) Na2O, silika modülü, su/bağlayıcı oranı ve yaşlanmanın cüruf tabanlı geopolimerlerin basınç mukavemetinde olan etkileri. Türk Doğa ve Fen Dergisi 6 2 26–31.
IEEE M. M. Yadollahi, S. Varolgüneş, and F. İşsever, “Na2O, silika modülü, su/bağlayıcı oranı ve yaşlanmanın cüruf tabanlı geopolimerlerin basınç mukavemetinde olan etkileri”, TJNS, vol. 6, no. 2, pp. 26–31, 2017.
ISNAD Yadollahi, Mehrzad Mohabbi et al. “Na2O, Silika modülü, su/Bağlayıcı Oranı Ve yaşlanmanın cüruf Tabanlı Geopolimerlerin basınç Mukavemetinde Olan Etkileri”. Türk Doğa ve Fen Dergisi 6/2 (December 2017), 26-31.
JAMA Yadollahi MM, Varolgüneş S, İşsever F. Na2O, silika modülü, su/bağlayıcı oranı ve yaşlanmanın cüruf tabanlı geopolimerlerin basınç mukavemetinde olan etkileri. TJNS. 2017;6:26–31.
MLA Yadollahi, Mehrzad Mohabbi et al. “Na2O, Silika modülü, su/Bağlayıcı Oranı Ve yaşlanmanın cüruf Tabanlı Geopolimerlerin basınç Mukavemetinde Olan Etkileri”. Türk Doğa Ve Fen Dergisi, vol. 6, no. 2, 2017, pp. 26-31.
Vancouver Yadollahi MM, Varolgüneş S, İşsever F. Na2O, silika modülü, su/bağlayıcı oranı ve yaşlanmanın cüruf tabanlı geopolimerlerin basınç mukavemetinde olan etkileri. TJNS. 2017;6(2):26-31.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.