İbuprofen
molekülünün Nükleer Manyetik Rezoanans
(NMR) parametresi ( 1H kimyasal kayma değerleri) teorik hesaplama metotları ile hesaplanmıştır.
Aynı şekilde ibuprofen molekülünün olası radikallerine ait Elektron
Paramanyetik Rezoanans (EPR) parametreleri (g ve aşırı ince yapı değerleri) teorik
hesaplama metotları kullanılarak hesaplanmıştır. İbuprofen molekülüne
konformasyon analizi yapılmış ve en kararlı yapı tayin edilmiştir. En kararlı
yapıya ait 1H kimyasal kayma değerleri hesaplanmıştır. Bulunan en kararlı yapı kullanılarak sekiz
tane olası radikal modellenmiştir. Modellenen radikallere ait EPR parametreleri
hesaplanmıştır
[1] Rorarius M.G., Suominen P., Baer G.A., Romooanen O., Tuinala R., Diclofenac and Ketoprofen for Pain Treatment After Elective Casesarean Section, Br. J. Anaesth., 70, 293–297, 1993.
[2] Hao H., Wang G., Sun J., Enantioselective pharmacokinetics of ibuprofen and involved mechanisms, Drug Metabol. Rev., 1 215–234, 2005.
[3] Hutt A.J., Caldwell J., The metabolic chiral inversion of 2-arylpropionic acids--a novel route with pharmacological consequences, J. Pharm. Pharmacol. 35, 693–704, 1983.
[4] Mohammad A., Shikha K., Synthesis and evaluation of anti-inflammatory, analgesic and lipid peroxidation properties of ibuprofen derivatives Acta Pharm., 57, 31–45, 2007.
[5] John D.B., Kenneth D.B., Barry P.K., Lorrie A.K., Sarah I.R, Comparison of an Antiinflammatory Dose of Ibuprofen, an Analgesic Dose of Ibuprofen, and Acetaminophen in the Treatment of Patients with Osteoarthritis of the Knee, New Engl. J. Med., 325, 87–91, 1991.
[6] Mirja L.H., Kalle H., Esko V.,Pirkko S., Ibuprofen or Acetaminophen for the Acute Treatment of Migraine in Children: A Double-blind, Randomized, Placebo-controlled, Crossover Study, Neurology 48 ,103–107, 1997.
[7] Cleuvers M., Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid Ecotox. Environ., Saf. 59(3) ,309–315, 2004.
[8] Gamulescu M.A., Schalke B., Schuierer G., Gabel V.P., Optic neuritis with visual field defect--possible Ibuprofen-related toxicity, Ann. Pharmacother., 40(3), 571–573, 2006.
[9] Fazlul H., Molecular Modelling Analysis of the Metabolism of Ibuprofen, J. Pharmacol. Toxicol., 1 (5), 456–463, 2006.
[10] Vueba M.L., Pina M.E, Batista De Carvalho L.A.E, Conformational stability of ibuprofen: Assessed by DFT calculations and optical vibrational spectroscopy J. Pharmacol. Sci., 97(2), 845–859, 2008.
[11] Alicia J., Maria L.L, Nestor E.M., Leonor L.T., Nora B.O., Vibrational and theoretical studies of non-steroidal anti-inflammatory drugs Ibuprofen [2-(4-isobutylphenyl)propionic acid]; Naproxen [6-methoxy-α-methyl-2-naphthalene acetic acid] and Tolmetin acids [1-methyl-5-(4-methylbenzoyl)-1H-pyrrole-2-acetic acid J. Mol. Struct., 783, 34–51, 2006.
[12] Dodziuk H., Demchuk O.M., Schilf W., Dolgonos G., Synthesis and NMR study of a first generation dendrimer having four branches involving four glycine and one carbomoyl-(3,7-dimethoxy-2-naphthalene) groups and attempts to complex it with α-, β- or γ-cyclodextrins, J. Mol. Struct., 693, 145-151, 2004.
[13] Beraldo H., Nacif W.F., West D.X., Spectral studies of semicarbazones derived from 3- and 4-formylpyridine and 3- and 4-acetylpyridine: crystal and molecular structure of 3-formylpyridine semicarbazone Spectrochim. Acta., A 57 (9) 1847-1854, 2001.
[14] Abdel-Shafi A.A., Effect of β-cyclodextrin on the excited state proton transfer in 1-naphthol-2-sulfonate Spectrochim. Acta A 57 (9), 1819-1828, 2001.
[15] Ruud K., Helgaker T., Kobayashi R., Jorgensen P., Bak K..L., Jensen H.J.A J. Multiconfigurational self‐consistent field calculations of nuclear shieldings using London atomic orbitals Chem. Phys., 100: 8178-8185, 1994.
[16] Chesnut D.B. Annual Reports on NMR Spectroscopy, 29,71-122, 1994.
[17] de Dios A.C. Ab initio calculations of the NMR chemical shift Progress in Magn. Reson. Spectrosc.,29,229-278, 1996.
[18] Barszczewicz A., Jaszunski M., Jackowski K., Ab initio calculations of the oxygen atom NMR shielding in the carbonyl group, Chem. Phys. Lett., 203, 404-408,1993.
[19] Cheeseman J.R., Trucks G.W., Keith T.A., Frisch M.J., A comparison of models for calculating nuclear magnetic resonance shielding tensors J. Chem. Phys.,104, 5497-5509, 1996.
[20] Kupka T., Koaski M., Pasterna G., Ruud K., Towards more reliable prediction of formaldehyde multinuclear NMR parameters and harmonic vibrations in the gas phase and solution J. Mol. Struct. (THEO- CHEM),467(1), 63-78,1999.
[21] Osmialowski B., Kolehmainen E., Gawinecki R., GIAO/DFT calculated chemical shifts of tautomeric species. 2-Phenacylpyridines and (Z)-2-(2-hydroxy-2-phenylvinyl)pyridines Magn. Reson. Chem., 39(6), 334-340, 2001.
[22] Marek R., Brus J., Tousek J., Kovacs L., Hockova D., N7- and N9-substituted purine derivatives: a 15N NMR study Magn. Reson. Chem. 40 (5) 353-360, 2002.
[23] Meng Z., Carper W.R., GIAO NMR calculations for atrazine and atrazine dimers: comparison of theoretical and experimental 1H and 13C chemical shifts, J. Mol. Struct. Theochem., 588, 45-53, 2002.
[24] Laihia K., Kolehmainen E.,Kauppinen R., Lorenc J., Puszko A., Multinuclear 1H, 13C and 15N NMR study of some substituted 2-amino-4-nitropyridines and their N-oxides Spectrochim. Acta A, 58(7), 1425-1435, 2002.
[25] Depature L., Surpateanu G., Carbanion substituent effects on 1-disubstituted 4-(4′-pyridyl)pyridinium methylide structures using 13C NMR spectroscopy and DFT method Spectrochim. Acta A 59(13),3029-3039, 2003.
[26] Dega-Szafran Z., Katrusiak A., Szafran M., X-ray, NMR and DFT studies of the complex of 1,4-dimethylpiperazine mono-betaine with p-hydroxybenzoic acid, J. Mol. Struct. 785, 160-166, 2006.
[27] Ciofini, I., Adamo, C., Barone, V., Complete structural and magnetic characterization of biological radicals in solution by an integrated quantum mechanical approach: glycyl radical as a case study, J. Chem. Phys. 121, 6710–6718, 2004.
[28] Harriman, J.E., Theo. Found. of Electron Spin Resonance. Academic Press, New York, 1978.
[30] Ban, F., Gauld J.W., Wetmore S.D., Boyd R.J., In EPR of Free Rad. in Sol. Trends in Methods and App. Kluwer Academic Pub., Dordrecht, The Netherlands Chapter 6, 2003.
[32] Liu L., Gao H., Molecular structure and vibrational spectra of ibuprofen using density function theory calculations, Spectrochimica Acta Part A 89, 201– 209, 2012.
[33] Becke A.D., Density-functional thermochemistry. III. The role of exact exchange, The Journal of chemical physics, 98(7), 5648-5652 1993.
[35] Lee C., Yang W., Parr R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical review B, 37(2), 785-789, 1988.
[37] di Cagnoa M., Stein P.C., Skalko-Basnet N., Brandl M., Bauer-Brandl A., Solubilization of ibuprofen with β-cyclodextrin derivatives: Energetic and structural studies, Journal of Pharmaceutical and Biomedical Analysis 55(3) 446–451, 2011.
[38] Bernhard, W. A., Close, D. M., Hüttermann, J. ve Zehner, H., The alkoxy radical, RCH2Ȯ, as a free radical product in x‐irradiated single crystals of nucleosides and nucleotides, The Journal of Chemical Physics, 67 (3), 1211-1219, 1977.
[1] Rorarius M.G., Suominen P., Baer G.A., Romooanen O., Tuinala R., Diclofenac and Ketoprofen for Pain Treatment After Elective Casesarean Section, Br. J. Anaesth., 70, 293–297, 1993.
[2] Hao H., Wang G., Sun J., Enantioselective pharmacokinetics of ibuprofen and involved mechanisms, Drug Metabol. Rev., 1 215–234, 2005.
[3] Hutt A.J., Caldwell J., The metabolic chiral inversion of 2-arylpropionic acids--a novel route with pharmacological consequences, J. Pharm. Pharmacol. 35, 693–704, 1983.
[4] Mohammad A., Shikha K., Synthesis and evaluation of anti-inflammatory, analgesic and lipid peroxidation properties of ibuprofen derivatives Acta Pharm., 57, 31–45, 2007.
[5] John D.B., Kenneth D.B., Barry P.K., Lorrie A.K., Sarah I.R, Comparison of an Antiinflammatory Dose of Ibuprofen, an Analgesic Dose of Ibuprofen, and Acetaminophen in the Treatment of Patients with Osteoarthritis of the Knee, New Engl. J. Med., 325, 87–91, 1991.
[6] Mirja L.H., Kalle H., Esko V.,Pirkko S., Ibuprofen or Acetaminophen for the Acute Treatment of Migraine in Children: A Double-blind, Randomized, Placebo-controlled, Crossover Study, Neurology 48 ,103–107, 1997.
[7] Cleuvers M., Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid Ecotox. Environ., Saf. 59(3) ,309–315, 2004.
[8] Gamulescu M.A., Schalke B., Schuierer G., Gabel V.P., Optic neuritis with visual field defect--possible Ibuprofen-related toxicity, Ann. Pharmacother., 40(3), 571–573, 2006.
[9] Fazlul H., Molecular Modelling Analysis of the Metabolism of Ibuprofen, J. Pharmacol. Toxicol., 1 (5), 456–463, 2006.
[10] Vueba M.L., Pina M.E, Batista De Carvalho L.A.E, Conformational stability of ibuprofen: Assessed by DFT calculations and optical vibrational spectroscopy J. Pharmacol. Sci., 97(2), 845–859, 2008.
[11] Alicia J., Maria L.L, Nestor E.M., Leonor L.T., Nora B.O., Vibrational and theoretical studies of non-steroidal anti-inflammatory drugs Ibuprofen [2-(4-isobutylphenyl)propionic acid]; Naproxen [6-methoxy-α-methyl-2-naphthalene acetic acid] and Tolmetin acids [1-methyl-5-(4-methylbenzoyl)-1H-pyrrole-2-acetic acid J. Mol. Struct., 783, 34–51, 2006.
[12] Dodziuk H., Demchuk O.M., Schilf W., Dolgonos G., Synthesis and NMR study of a first generation dendrimer having four branches involving four glycine and one carbomoyl-(3,7-dimethoxy-2-naphthalene) groups and attempts to complex it with α-, β- or γ-cyclodextrins, J. Mol. Struct., 693, 145-151, 2004.
[13] Beraldo H., Nacif W.F., West D.X., Spectral studies of semicarbazones derived from 3- and 4-formylpyridine and 3- and 4-acetylpyridine: crystal and molecular structure of 3-formylpyridine semicarbazone Spectrochim. Acta., A 57 (9) 1847-1854, 2001.
[14] Abdel-Shafi A.A., Effect of β-cyclodextrin on the excited state proton transfer in 1-naphthol-2-sulfonate Spectrochim. Acta A 57 (9), 1819-1828, 2001.
[15] Ruud K., Helgaker T., Kobayashi R., Jorgensen P., Bak K..L., Jensen H.J.A J. Multiconfigurational self‐consistent field calculations of nuclear shieldings using London atomic orbitals Chem. Phys., 100: 8178-8185, 1994.
[16] Chesnut D.B. Annual Reports on NMR Spectroscopy, 29,71-122, 1994.
[17] de Dios A.C. Ab initio calculations of the NMR chemical shift Progress in Magn. Reson. Spectrosc.,29,229-278, 1996.
[18] Barszczewicz A., Jaszunski M., Jackowski K., Ab initio calculations of the oxygen atom NMR shielding in the carbonyl group, Chem. Phys. Lett., 203, 404-408,1993.
[19] Cheeseman J.R., Trucks G.W., Keith T.A., Frisch M.J., A comparison of models for calculating nuclear magnetic resonance shielding tensors J. Chem. Phys.,104, 5497-5509, 1996.
[20] Kupka T., Koaski M., Pasterna G., Ruud K., Towards more reliable prediction of formaldehyde multinuclear NMR parameters and harmonic vibrations in the gas phase and solution J. Mol. Struct. (THEO- CHEM),467(1), 63-78,1999.
[21] Osmialowski B., Kolehmainen E., Gawinecki R., GIAO/DFT calculated chemical shifts of tautomeric species. 2-Phenacylpyridines and (Z)-2-(2-hydroxy-2-phenylvinyl)pyridines Magn. Reson. Chem., 39(6), 334-340, 2001.
[22] Marek R., Brus J., Tousek J., Kovacs L., Hockova D., N7- and N9-substituted purine derivatives: a 15N NMR study Magn. Reson. Chem. 40 (5) 353-360, 2002.
[23] Meng Z., Carper W.R., GIAO NMR calculations for atrazine and atrazine dimers: comparison of theoretical and experimental 1H and 13C chemical shifts, J. Mol. Struct. Theochem., 588, 45-53, 2002.
[24] Laihia K., Kolehmainen E.,Kauppinen R., Lorenc J., Puszko A., Multinuclear 1H, 13C and 15N NMR study of some substituted 2-amino-4-nitropyridines and their N-oxides Spectrochim. Acta A, 58(7), 1425-1435, 2002.
[25] Depature L., Surpateanu G., Carbanion substituent effects on 1-disubstituted 4-(4′-pyridyl)pyridinium methylide structures using 13C NMR spectroscopy and DFT method Spectrochim. Acta A 59(13),3029-3039, 2003.
[26] Dega-Szafran Z., Katrusiak A., Szafran M., X-ray, NMR and DFT studies of the complex of 1,4-dimethylpiperazine mono-betaine with p-hydroxybenzoic acid, J. Mol. Struct. 785, 160-166, 2006.
[27] Ciofini, I., Adamo, C., Barone, V., Complete structural and magnetic characterization of biological radicals in solution by an integrated quantum mechanical approach: glycyl radical as a case study, J. Chem. Phys. 121, 6710–6718, 2004.
[28] Harriman, J.E., Theo. Found. of Electron Spin Resonance. Academic Press, New York, 1978.
[30] Ban, F., Gauld J.W., Wetmore S.D., Boyd R.J., In EPR of Free Rad. in Sol. Trends in Methods and App. Kluwer Academic Pub., Dordrecht, The Netherlands Chapter 6, 2003.
[32] Liu L., Gao H., Molecular structure and vibrational spectra of ibuprofen using density function theory calculations, Spectrochimica Acta Part A 89, 201– 209, 2012.
[33] Becke A.D., Density-functional thermochemistry. III. The role of exact exchange, The Journal of chemical physics, 98(7), 5648-5652 1993.
[35] Lee C., Yang W., Parr R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical review B, 37(2), 785-789, 1988.
[37] di Cagnoa M., Stein P.C., Skalko-Basnet N., Brandl M., Bauer-Brandl A., Solubilization of ibuprofen with β-cyclodextrin derivatives: Energetic and structural studies, Journal of Pharmaceutical and Biomedical Analysis 55(3) 446–451, 2011.
[38] Bernhard, W. A., Close, D. M., Hüttermann, J. ve Zehner, H., The alkoxy radical, RCH2Ȯ, as a free radical product in x‐irradiated single crystals of nucleosides and nucleotides, The Journal of Chemical Physics, 67 (3), 1211-1219, 1977.
Taşdemir, H. U., Taşdemir, O. U., & Türkkan, E. (2018). İbuprofen Molekülünün NMR ve EPR Parametrelerinin Teorik Hesaplama Yöntemleri ile Hesaplanması. Türk Doğa Ve Fen Dergisi, 7(1), 1-6.
AMA
Taşdemir HU, Taşdemir OU, Türkkan E. İbuprofen Molekülünün NMR ve EPR Parametrelerinin Teorik Hesaplama Yöntemleri ile Hesaplanması. TJNS. June 2018;7(1):1-6.
Chicago
Taşdemir, Halil Uğur, Osman Ufuk Taşdemir, and Ercan Türkkan. “İbuprofen Molekülünün NMR Ve EPR Parametrelerinin Teorik Hesaplama Yöntemleri Ile Hesaplanması”. Türk Doğa Ve Fen Dergisi 7, no. 1 (June 2018): 1-6.
EndNote
Taşdemir HU, Taşdemir OU, Türkkan E (June 1, 2018) İbuprofen Molekülünün NMR ve EPR Parametrelerinin Teorik Hesaplama Yöntemleri ile Hesaplanması. Türk Doğa ve Fen Dergisi 7 1 1–6.
IEEE
H. U. Taşdemir, O. U. Taşdemir, and E. Türkkan, “İbuprofen Molekülünün NMR ve EPR Parametrelerinin Teorik Hesaplama Yöntemleri ile Hesaplanması”, TJNS, vol. 7, no. 1, pp. 1–6, 2018.
ISNAD
Taşdemir, Halil Uğur et al. “İbuprofen Molekülünün NMR Ve EPR Parametrelerinin Teorik Hesaplama Yöntemleri Ile Hesaplanması”. Türk Doğa ve Fen Dergisi 7/1 (June 2018), 1-6.
JAMA
Taşdemir HU, Taşdemir OU, Türkkan E. İbuprofen Molekülünün NMR ve EPR Parametrelerinin Teorik Hesaplama Yöntemleri ile Hesaplanması. TJNS. 2018;7:1–6.
MLA
Taşdemir, Halil Uğur et al. “İbuprofen Molekülünün NMR Ve EPR Parametrelerinin Teorik Hesaplama Yöntemleri Ile Hesaplanması”. Türk Doğa Ve Fen Dergisi, vol. 7, no. 1, 2018, pp. 1-6.
Vancouver
Taşdemir HU, Taşdemir OU, Türkkan E. İbuprofen Molekülünün NMR ve EPR Parametrelerinin Teorik Hesaplama Yöntemleri ile Hesaplanması. TJNS. 2018;7(1):1-6.