Research Article
BibTex RIS Cite

Ursodeoksikolik Asit’in Farelerde Pentilentetrazol ile Oluşturulan Akut Epileptik Nöbetler Üzerine Etkisinin Araştırılması

Year 2020, Volume: 9 Issue: 2, 170 - 174, 30.12.2020
https://doi.org/10.46810/tdfd.761990

Abstract

Öz: Bu çalışmanın amacı, Ursodeksikolik asit (UDKA) ön tedavisinin PTZ ile indüklenen akut epilepsi fare modelinde nöbet davranışına ve hipokampal total oksidan status (TOS) ve kaspaz-3 ekpresyonlarına etkisini araştırmaktır. Çalışmada BALB-c türü 24 hayvan rastgele 4 gruba ayrıldı: Kontrol grubu, PTZ; PTZ ile nöbet indüklenen grup, UDKA-100; 5 gün boyunca UDKA 100 mg kg-1 verilen ve PTZ uygulanan grup, UDKA-200; 5 gün boyunca UDKA 200 mg kg-1 verilen ve PTZ uygulanan grup. UDKA ön tedavisinin nöbet davranışı üzerine istatistiksel olarak anlamlı bir etkisi bulunmadı. UDKA-200 grubunda daha belirgin olmak üzere, UDKA ön tedavisi hipokampal TOS ekspresyonunu anlamlı olarak azalttı. Benzer şekilde, hipokampal kaspaz-3 ekspresyonu UDKA alan gruplarda daha düşük bulundu. Sonuç olarak, UDKA antioksidatif ve antiapoptotik özellikleriyle epilepsi tedavisi için faydalı bir terapotik ajan olabilir.

Supporting Institution

Herhangi bir kurumdan destek alınmamıştır.

References

  • [1] Fisher RS, van Emde BW, BlumeW, Elger C, Genton P, Lee P, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005; 46:470-72.
  • [2] Jain S, Webster TJ, Sharma A, Basu B. Intracellular reactive oxidative stress, cell proliferation and apoptosis of Schwann cells on carbon nanofibrous substrates. Biomaterials 2013;34(21):4891-901.
  • [3] Monte MJ, Marin JJG, Antelo A, Vazquez-Tato J. Bile acids: chemistry, physiology, and pathophysiology. World J Gastroenterol. 2009;15:804-16.
  • [4] Daruich A, Picard E, Boatright JH, Behar-Cohen F. Review: The bile acids urso- and tauroursodeoxycholic acid as neuroprotective therapies in retinal disease. Mol Vis. 2019; 25:610-24.
  • [5] Reinicke M, Schröter J, Müller-Klieser D, Helmschrodt C, Ceglarek U. Free oxysterols and bile acids including conjugates - Simultaneous quantification in human plasma and cerebrospinal fluid by liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 2018;1037:245-55.
  • [6] European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of cholestatic liver diseases. J Hepatol. 2009;51:237-67.
  • [7] Amaral JD, Viana RJS, Ramalho RM, Steer CJ, Rodrigues CMP. Bile acids: regulation of apoptosis by ursodeoxycholic acid. J Lipid Res. 2009;50:1721-34.
  • [8] Bell SM, Barnes K, Clemmens H, et al. Ursodeoxycholic Acid Improves Mitochondrial Function and Redistributes Drp1 in Fibroblasts from Patients with Either Sporadic or Familial Alzheimer's Disease. J Mol Biol. 2018;430(21):3942-3953.
  • [9] Abdelkader NF, Safar MM, Salem HA. Ursodeoxycholic Acid Ameliorates Apoptotic Cascade in the Rotenone Model of Parkinson’s Disease: Modulation of Mitochondrial Perturbations. Mol Neurobiol. 2016;53:810-17.
  • [10] Min J-H, Hong Y-H, Sung J-J, Kim S-M, Lee JB, Lee K-W. Oral solubilized ursodeoxycholic acid therapy in amyotrophic lateral sclerosis: a randomized cross-over trial. J Korean Med Sci. 2012;27:200-06.
  • [11] Racine, RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Neurophysiol. 1972;32:281-94.
  • [12] Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004;37(4): 277-85.
  • [13] Beit-Yannai E, Kohen R, Horowitz M, Trembovler V, Shohami E. Changes of biological reducing activity in rat brain following closed head injury: A cyclic voltammetry study in normal and heat-acclimated rats. J Cereb Blood Flow & Metab. 1997;17:273-79.
  • [14] Naziroglu M. Molecular mechanisms of vitamin E on intracellular signaling pathways in brain. In: Goth L, editor. Reactive oxygen species and diseases. Kerala, India: Research Signpost Press; 2007. p. 239-56.
  • [15] Shin EJ, Jeong JH, Chung YH, Kim WK, Ko KH et al. Role of oxidative stress in epileptic seizures. Neurochem Int. 2011;59(2):122-137.
  • [16] Patsoukis N, Zervoudakis G, Panagopoulos NT, Georgiou CD, Angelatou F, Matsokis NA. Thiol redox state (TRS) and oxidative stress in the mouse hippocampus after pentylenetetrazol-induced epileptic seizure. Neurosci Lett. 2004;357:83-86.
  • [17] Rodrigues CM, Fan G, Ma X, Kren BT, Steer CJ: A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Invest. 1998;101:2790-99.
  • [18] Méndez-Armenta M, Nava-Ruíz C, Juárez-Rebollar D, Rodríguez-Martínez E, Yescas Gómez P. Oxidative stress associated with neuronal apoptosis in experimental models of epilepsy. Oxid Med Cell Long. 2014;2014:12.
  • [19] Ali AE, Mahdy HM, Elsherbiny DM, Azab SS. Rifampicin ameliorates lithium-pilocarpine-induced seizures, consequent hippocampal damage and memory deficit in rats: Impact on oxidative, inflammatory and apoptotic machineries. Biochem Pharmacol. 2018;156:431‐43.
  • [20] Faherty CJ, Xanthoudakis S, Smeyne RJ. Caspase-3–dependent neuronal death in the hippocampus following kainic acid treatment. Mol Brain Res. 1999;70(1):159-63.
  • [21] Solá S, Amaral JD, Castro RE, Ramalho RM, Borralho PM, Kren BT, et al. Nuclear translocation of UDCA by the glucocorticoid receptor is required to reduce TGF-beta1-induced apoptosis in rat hepatocytes. Hepatology 2005;42:925-34.
  • [22] Solá S, Castro RE, Kren BT, Steer CJ, Rodrigues CMP. Modulation of nuclear steroid receptors by ursodeoxycholic acid inhibits TGF-beta1-induced E2F-1/p53-mediated apoptosis of rat hepatocytes. Biochem. 2004;43:8429-38.
  • [23] Naderi M, Jand A, Jand Y, Rahjoo T, Palizvan MR. Effect of ursodeoxycholic acid on pentylenetetrazole kindling and kindling induced memory impairment in rat. J Babol Univ Medical Sci. 2018;20(1):50-56.
Year 2020, Volume: 9 Issue: 2, 170 - 174, 30.12.2020
https://doi.org/10.46810/tdfd.761990

Abstract

References

  • [1] Fisher RS, van Emde BW, BlumeW, Elger C, Genton P, Lee P, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005; 46:470-72.
  • [2] Jain S, Webster TJ, Sharma A, Basu B. Intracellular reactive oxidative stress, cell proliferation and apoptosis of Schwann cells on carbon nanofibrous substrates. Biomaterials 2013;34(21):4891-901.
  • [3] Monte MJ, Marin JJG, Antelo A, Vazquez-Tato J. Bile acids: chemistry, physiology, and pathophysiology. World J Gastroenterol. 2009;15:804-16.
  • [4] Daruich A, Picard E, Boatright JH, Behar-Cohen F. Review: The bile acids urso- and tauroursodeoxycholic acid as neuroprotective therapies in retinal disease. Mol Vis. 2019; 25:610-24.
  • [5] Reinicke M, Schröter J, Müller-Klieser D, Helmschrodt C, Ceglarek U. Free oxysterols and bile acids including conjugates - Simultaneous quantification in human plasma and cerebrospinal fluid by liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 2018;1037:245-55.
  • [6] European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of cholestatic liver diseases. J Hepatol. 2009;51:237-67.
  • [7] Amaral JD, Viana RJS, Ramalho RM, Steer CJ, Rodrigues CMP. Bile acids: regulation of apoptosis by ursodeoxycholic acid. J Lipid Res. 2009;50:1721-34.
  • [8] Bell SM, Barnes K, Clemmens H, et al. Ursodeoxycholic Acid Improves Mitochondrial Function and Redistributes Drp1 in Fibroblasts from Patients with Either Sporadic or Familial Alzheimer's Disease. J Mol Biol. 2018;430(21):3942-3953.
  • [9] Abdelkader NF, Safar MM, Salem HA. Ursodeoxycholic Acid Ameliorates Apoptotic Cascade in the Rotenone Model of Parkinson’s Disease: Modulation of Mitochondrial Perturbations. Mol Neurobiol. 2016;53:810-17.
  • [10] Min J-H, Hong Y-H, Sung J-J, Kim S-M, Lee JB, Lee K-W. Oral solubilized ursodeoxycholic acid therapy in amyotrophic lateral sclerosis: a randomized cross-over trial. J Korean Med Sci. 2012;27:200-06.
  • [11] Racine, RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Neurophysiol. 1972;32:281-94.
  • [12] Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004;37(4): 277-85.
  • [13] Beit-Yannai E, Kohen R, Horowitz M, Trembovler V, Shohami E. Changes of biological reducing activity in rat brain following closed head injury: A cyclic voltammetry study in normal and heat-acclimated rats. J Cereb Blood Flow & Metab. 1997;17:273-79.
  • [14] Naziroglu M. Molecular mechanisms of vitamin E on intracellular signaling pathways in brain. In: Goth L, editor. Reactive oxygen species and diseases. Kerala, India: Research Signpost Press; 2007. p. 239-56.
  • [15] Shin EJ, Jeong JH, Chung YH, Kim WK, Ko KH et al. Role of oxidative stress in epileptic seizures. Neurochem Int. 2011;59(2):122-137.
  • [16] Patsoukis N, Zervoudakis G, Panagopoulos NT, Georgiou CD, Angelatou F, Matsokis NA. Thiol redox state (TRS) and oxidative stress in the mouse hippocampus after pentylenetetrazol-induced epileptic seizure. Neurosci Lett. 2004;357:83-86.
  • [17] Rodrigues CM, Fan G, Ma X, Kren BT, Steer CJ: A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Invest. 1998;101:2790-99.
  • [18] Méndez-Armenta M, Nava-Ruíz C, Juárez-Rebollar D, Rodríguez-Martínez E, Yescas Gómez P. Oxidative stress associated with neuronal apoptosis in experimental models of epilepsy. Oxid Med Cell Long. 2014;2014:12.
  • [19] Ali AE, Mahdy HM, Elsherbiny DM, Azab SS. Rifampicin ameliorates lithium-pilocarpine-induced seizures, consequent hippocampal damage and memory deficit in rats: Impact on oxidative, inflammatory and apoptotic machineries. Biochem Pharmacol. 2018;156:431‐43.
  • [20] Faherty CJ, Xanthoudakis S, Smeyne RJ. Caspase-3–dependent neuronal death in the hippocampus following kainic acid treatment. Mol Brain Res. 1999;70(1):159-63.
  • [21] Solá S, Amaral JD, Castro RE, Ramalho RM, Borralho PM, Kren BT, et al. Nuclear translocation of UDCA by the glucocorticoid receptor is required to reduce TGF-beta1-induced apoptosis in rat hepatocytes. Hepatology 2005;42:925-34.
  • [22] Solá S, Castro RE, Kren BT, Steer CJ, Rodrigues CMP. Modulation of nuclear steroid receptors by ursodeoxycholic acid inhibits TGF-beta1-induced E2F-1/p53-mediated apoptosis of rat hepatocytes. Biochem. 2004;43:8429-38.
  • [23] Naderi M, Jand A, Jand Y, Rahjoo T, Palizvan MR. Effect of ursodeoxycholic acid on pentylenetetrazole kindling and kindling induced memory impairment in rat. J Babol Univ Medical Sci. 2018;20(1):50-56.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Articles
Authors

Sebahattin Karabulut 0000-0002-3261-4125

Ahmet Şevki Taşkıran 0000-0002-5810-8415

Publication Date December 30, 2020
Published in Issue Year 2020 Volume: 9 Issue: 2

Cite

APA Karabulut, S., & Taşkıran, A. Ş. (2020). Ursodeoksikolik Asit’in Farelerde Pentilentetrazol ile Oluşturulan Akut Epileptik Nöbetler Üzerine Etkisinin Araştırılması. Türk Doğa Ve Fen Dergisi, 9(2), 170-174. https://doi.org/10.46810/tdfd.761990
AMA Karabulut S, Taşkıran AŞ. Ursodeoksikolik Asit’in Farelerde Pentilentetrazol ile Oluşturulan Akut Epileptik Nöbetler Üzerine Etkisinin Araştırılması. TJNS. December 2020;9(2):170-174. doi:10.46810/tdfd.761990
Chicago Karabulut, Sebahattin, and Ahmet Şevki Taşkıran. “Ursodeoksikolik Asit’in Farelerde Pentilentetrazol Ile Oluşturulan Akut Epileptik Nöbetler Üzerine Etkisinin Araştırılması”. Türk Doğa Ve Fen Dergisi 9, no. 2 (December 2020): 170-74. https://doi.org/10.46810/tdfd.761990.
EndNote Karabulut S, Taşkıran AŞ (December 1, 2020) Ursodeoksikolik Asit’in Farelerde Pentilentetrazol ile Oluşturulan Akut Epileptik Nöbetler Üzerine Etkisinin Araştırılması. Türk Doğa ve Fen Dergisi 9 2 170–174.
IEEE S. Karabulut and A. Ş. Taşkıran, “Ursodeoksikolik Asit’in Farelerde Pentilentetrazol ile Oluşturulan Akut Epileptik Nöbetler Üzerine Etkisinin Araştırılması”, TJNS, vol. 9, no. 2, pp. 170–174, 2020, doi: 10.46810/tdfd.761990.
ISNAD Karabulut, Sebahattin - Taşkıran, Ahmet Şevki. “Ursodeoksikolik Asit’in Farelerde Pentilentetrazol Ile Oluşturulan Akut Epileptik Nöbetler Üzerine Etkisinin Araştırılması”. Türk Doğa ve Fen Dergisi 9/2 (December 2020), 170-174. https://doi.org/10.46810/tdfd.761990.
JAMA Karabulut S, Taşkıran AŞ. Ursodeoksikolik Asit’in Farelerde Pentilentetrazol ile Oluşturulan Akut Epileptik Nöbetler Üzerine Etkisinin Araştırılması. TJNS. 2020;9:170–174.
MLA Karabulut, Sebahattin and Ahmet Şevki Taşkıran. “Ursodeoksikolik Asit’in Farelerde Pentilentetrazol Ile Oluşturulan Akut Epileptik Nöbetler Üzerine Etkisinin Araştırılması”. Türk Doğa Ve Fen Dergisi, vol. 9, no. 2, 2020, pp. 170-4, doi:10.46810/tdfd.761990.
Vancouver Karabulut S, Taşkıran AŞ. Ursodeoksikolik Asit’in Farelerde Pentilentetrazol ile Oluşturulan Akut Epileptik Nöbetler Üzerine Etkisinin Araştırılması. TJNS. 2020;9(2):170-4.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.