Research Article
BibTex RIS Cite

Cytotoxic and Genotoxic Effects of Some Azo Dyes in Allium cepa Root Tip Cells

Year 2020, Volume: 9 Issue: 2, 57 - 63, 30.12.2020
https://doi.org/10.46810/tdfd.790808

Abstract

Azo dyes (AD-1, AD-2) were synthesized from the reaction diazonium salts of the aromatic amines salt with the enaminone derivative. The chemical structure of the synthesized novel azo dye (AD-2) was characterized by elemental analysis and other spectral techniques (FTIR, 1H NMR and 13C NMR). Azo dyes are used frequently in the industry and pose a great danger especially for water resources. In this respect, azo dyes threaten many products indirectly in agricultural applications. In this study, the cytotoxic and genotoxic effects of potential azo dyes (AD-1, AD-2) that can be used in industrial applications were determined using Allium test system in five different concentrations (6.25, 12.5, 25, 50, and 100 µM). As a result of the cytogenetic analyzes, it was determined that both azo dyes significantly reduced the number of divisions of A. cepa cells and caused chromosomal abnormalities in dividing cells. As a result, in this research, it is emphasized that the azo dyes (AD-1, AD-2), which are potentially used in the industry, cause genotoxic and cytotoxic effects in the living structures.

Supporting Institution

Yozgat Bozok University

Project Number

6602c-ASYO/19-266.

Thanks

This work was supported by Research Fund of Science and Technology Practice & Research Centre of Yozgat Bozok University (Project number: 6602c-ASYO/19-266).

References

  • [1] Ilic DK, Ostafe R, Djurdjevic DA, Popovic N, Schillberg S, Fischer R, et al. Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls. Enzyme Microb Technol. 2020; 136: 109509.
  • [2] Bediako JK, Lin S, Sarkar AK, Zhao Y, Choi JW, Song MH, et al. Evaluation of orange peel-derived activated carbons for treatment of dye-contaminated wastewater tailings. Environ Sci Pollut Res Int. 2020; 27: 1053-1068.
  • [3] Abbas Al-Tahan RA. Synthesis and characterization of azo dyes ligand complexes with some metal ions. Int J Chemtech Res. 2018; 11(6): 108-113.
  • [4] Lole BA, Piste PB. Clay mediated one step synthesis of azo dyes with 1,3-benzoxazole moie. J Chem Pharm Res. 2017; 9(12): 53-58.
  • [5] Demircali A, Karci F, Avinc O, Kahriman AU, Gedik G, Bakan E. The synthesis, characterization and investigation of absorption properties of disperse disazo dyes containing pyrazole and isoxazole. J Mol Struct. 2019; 1181: 8-13.
  • [6] Ansari MA, Yadav D, Singh MS. Rhodium(II)-Catalyzed Annulative Coupling of β-Ketothioamides with α-Diazo Compounds: Access to Highly Functionalized Thiazolidin-4-ones and Thiazoline. J Org Chem. 2020; 85(13): 8320-8329.
  • [7] He Y, Lou J, Wu P, Zhou Y, Yu Z. Copper-Catalyzed Annulative Coupling of S,S-Disubstituted Enones with Diazo Compounds to Access Highly Functionalized Thiophene Derivatives. J Org Chem. 2020; 85(2): 1044-1053.
  • [8] Li X, Ye X, Wei C, Shan C, Wojtas L, Wang Q, et al. Diazo Activation with Diazonium Salts: Synthesis of Indazole and 1,2,4-Triazole. Org Lett. 2020; 22(11): 4151-4155.
  • [9] Xiong M, Liang X, Gao Z, Lei A, Pan Y. Synthesis of Isoxazolines and Oxazines by Electrochemical Intermolecular [2+1+n] Annulation: Diazo Compounds Act as Radical Acceptors. Org Lett. 2019; 21(23): 9300-9305.
  • [10] Green SP, Wheelhouse KM, Payne AD, Hallett JP, Miller PW, Bull JA. Thermal Stability and Explosive Hazard Assessment of Diazo Compounds and Diazo Transfer Reagents. Org Process Res Dev. 2020; 24(1): 67-84.
  • [11] Luna-Alvarado MA, Estrada-Flores M, Manriquez-Ramirez ME, German CMR. Bismuth oxide carbonate structures synthesized by microwave-assisted solvothermal approach and its use as catalyst for the degradation of azo dye in a solution. J Miner Mater Char Eng. 2019; 7(6): 468-479.
  • [12] Feng T, Bavumiragira JP, Wambui MA, Kabtamu DM, Laszlo K, Wang Y, et al. Hierarchical porous induced competent removal of low concentration azo dye molecules by generating a leachy crystalline structure H-MIL-53(Fe). Chin Chem Lett. 2020; Ahead of Print.
  • [13] Benkhaya S, M'rabet S, El Harfi A. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon. 2020; 6(1): e03271.
  • [14] El-Shabhaby OA, Abdel Migid HM, Soliman MI, Mashaly IA. Genotoxicity screening of industrial wastewater using the Allium cepa chromosome aberration assay. Pak J Biol Sci. 2003; 6: 23-28.
  • [15] Kovalchuk O, Kovalchuk I, Arkhipov A, Telyuk P, Hohn B, Kovalchuk L. The Allium cepa chromosome aberration test reliably measures genotoxicity of soils of inhabited areas in the Ukraine contaminated by the Chernobyl accident. Mutat Res. 1998; 415: 47-57.
  • [16] Antosiewicz D. Analysis of the cell cycle in root meristem of Allium cepa under the influence on Ledakrin. Folia Histochem Cytobiol. 1990; 28(1-2): 79-95.
  • [17] Panda BB, Sahu UK. Induction of abnormal spindle function and cytokinesis inhibition in mitotic cells od Allium cepa by the organophosphorus insecticide fensulfotion. Cytobios. 1985; 42: 147-155.
  • [18] Sharma, CBSR. Plant meristems as monitors of genetic toxicity of environmental chemicals. Curr. Sci. 1983; 52(21): 1000-1002.
  • [19] Saxena PN, Chauhan LKS, Gupta, SK. Cytogenetic effects of commercial formulation of cypermethrin in root meristem cells of Allium sativum: Spectroscopic basis of chromosome damage. Toxicology. 2005; 216: 244-252.
  • [20] Liman R, Cigerci IH, Akyıl D, Eren Y, Konuk, M. Determination of genotoxicity of Fenaminosulf by Allium and Comet Tests. Pestic Biochem Phys. 2011; 99: 61-64.
  • [21] Gümüş M, Sert Y, Koca İ. Synthesis, characterization and theoretical studies of novel sulfonamide-aldehydes derivatives having tautomeric forms. Org Commun. 2019; 12(4): 176-187.
  • [22] Özkan S, Liman R. Cytotoxicity and genotoxicity in Allium cepa L. root meristem cells exposed to the herbicide penoxsulam. CBU Journal Of Science. 2019; 15(2): 221-226.
  • [23] Badr A. Cytogenetic activities of 3 sulphonamides. Mutat Res Lett. 1982; 104(1-3): 95-100.
  • [24] Leme DM, Marin-Morales MA. Allium cepa test in environmental monitoring: A review on its application. Mutat Res. 2009: 682, 71-81.
  • [25] Quiwei Y, Quiuhong Y, Sicheng H. The effects of benzamide on the variation in the root tip cells of Vicia faba. Acta Agric Bor Sin. 1994; 9(1): 87-91.
  • [26] Maldonado A, Pardo EG, Gutierrez C. Sister-chromatid exchange (SCE) elimination kinetics in BrdUrd-treated cells irradiated with visible light. Mutat Res-Fund Mol M. 1988; 197(1): 117-125.
  • [27] Maslat AO, Al-Hamdany R, Fataftah Z, Mahrath AJ, Abussaud MJ. Genotoxicity, antifungal and antibacterial activity of newly synthesized N-(3-phthalidyl)amines and o-benzoyl benzamide derivatives. Toxicol Environ Chem. 2003; 85(4-6): 149-157.

Allium cepa Kök Ucu Hücrelerinde Bazı Azo Boyarmaddelerin Sitotoksik ve Genotoksik Etkileri

Year 2020, Volume: 9 Issue: 2, 57 - 63, 30.12.2020
https://doi.org/10.46810/tdfd.790808

Abstract

Enaminon türevleriyle aromatik aminlerin diazonyum tuzlarının reaksiyonundan azo boyaları (AD-1, AD-2) sentezlendi. Sentezlenen yeni azo boyanın (AD-2) kimyasal yapısı, elementel analiz ve diğer spektral tekniklerle (FTIR, 1H NMR ve 13C NMR) karakterize edildi. Azo boyaları endüstride sıklıkla kullanılmakta ve özellikle su kaynakları için büyük tehlike oluşturmaktadır. Bu bakımdan azo boyalar tarımsal uygulamalarda birçok ürünü dolaylı olarak tehdit etmektedir. Bu çalışmada, endüstriyel uygulamalarda kullanılabilecek potansiyel azo boyaların (AD-1, AD-2) sitotoksik ve genotoksik etkileri, Allium test sistemi kullanılarak beş farklı konsantrasyonda (6.25, 12.5, 25, 50 ve 100 µM) belirlendi. Sitogenetik analizler sonucunda, her iki azo boyanın da A. cepa hücrelerinin bölünme sayısını önemli ölçüde azalttığı ve bölünen hücrelerde kromozomal anormalliklere neden olduğu belirlendi. Sonuç olarak, bu araştırmada, endüstride potansiyel olarak kullanılabilecek azo boyaların (AD-1, AD-2) canlı yapılarda genotoksik ve sitotoksik etkilere neden olduğu vurgulanmaktadır.

Project Number

6602c-ASYO/19-266.

References

  • [1] Ilic DK, Ostafe R, Djurdjevic DA, Popovic N, Schillberg S, Fischer R, et al. Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls. Enzyme Microb Technol. 2020; 136: 109509.
  • [2] Bediako JK, Lin S, Sarkar AK, Zhao Y, Choi JW, Song MH, et al. Evaluation of orange peel-derived activated carbons for treatment of dye-contaminated wastewater tailings. Environ Sci Pollut Res Int. 2020; 27: 1053-1068.
  • [3] Abbas Al-Tahan RA. Synthesis and characterization of azo dyes ligand complexes with some metal ions. Int J Chemtech Res. 2018; 11(6): 108-113.
  • [4] Lole BA, Piste PB. Clay mediated one step synthesis of azo dyes with 1,3-benzoxazole moie. J Chem Pharm Res. 2017; 9(12): 53-58.
  • [5] Demircali A, Karci F, Avinc O, Kahriman AU, Gedik G, Bakan E. The synthesis, characterization and investigation of absorption properties of disperse disazo dyes containing pyrazole and isoxazole. J Mol Struct. 2019; 1181: 8-13.
  • [6] Ansari MA, Yadav D, Singh MS. Rhodium(II)-Catalyzed Annulative Coupling of β-Ketothioamides with α-Diazo Compounds: Access to Highly Functionalized Thiazolidin-4-ones and Thiazoline. J Org Chem. 2020; 85(13): 8320-8329.
  • [7] He Y, Lou J, Wu P, Zhou Y, Yu Z. Copper-Catalyzed Annulative Coupling of S,S-Disubstituted Enones with Diazo Compounds to Access Highly Functionalized Thiophene Derivatives. J Org Chem. 2020; 85(2): 1044-1053.
  • [8] Li X, Ye X, Wei C, Shan C, Wojtas L, Wang Q, et al. Diazo Activation with Diazonium Salts: Synthesis of Indazole and 1,2,4-Triazole. Org Lett. 2020; 22(11): 4151-4155.
  • [9] Xiong M, Liang X, Gao Z, Lei A, Pan Y. Synthesis of Isoxazolines and Oxazines by Electrochemical Intermolecular [2+1+n] Annulation: Diazo Compounds Act as Radical Acceptors. Org Lett. 2019; 21(23): 9300-9305.
  • [10] Green SP, Wheelhouse KM, Payne AD, Hallett JP, Miller PW, Bull JA. Thermal Stability and Explosive Hazard Assessment of Diazo Compounds and Diazo Transfer Reagents. Org Process Res Dev. 2020; 24(1): 67-84.
  • [11] Luna-Alvarado MA, Estrada-Flores M, Manriquez-Ramirez ME, German CMR. Bismuth oxide carbonate structures synthesized by microwave-assisted solvothermal approach and its use as catalyst for the degradation of azo dye in a solution. J Miner Mater Char Eng. 2019; 7(6): 468-479.
  • [12] Feng T, Bavumiragira JP, Wambui MA, Kabtamu DM, Laszlo K, Wang Y, et al. Hierarchical porous induced competent removal of low concentration azo dye molecules by generating a leachy crystalline structure H-MIL-53(Fe). Chin Chem Lett. 2020; Ahead of Print.
  • [13] Benkhaya S, M'rabet S, El Harfi A. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon. 2020; 6(1): e03271.
  • [14] El-Shabhaby OA, Abdel Migid HM, Soliman MI, Mashaly IA. Genotoxicity screening of industrial wastewater using the Allium cepa chromosome aberration assay. Pak J Biol Sci. 2003; 6: 23-28.
  • [15] Kovalchuk O, Kovalchuk I, Arkhipov A, Telyuk P, Hohn B, Kovalchuk L. The Allium cepa chromosome aberration test reliably measures genotoxicity of soils of inhabited areas in the Ukraine contaminated by the Chernobyl accident. Mutat Res. 1998; 415: 47-57.
  • [16] Antosiewicz D. Analysis of the cell cycle in root meristem of Allium cepa under the influence on Ledakrin. Folia Histochem Cytobiol. 1990; 28(1-2): 79-95.
  • [17] Panda BB, Sahu UK. Induction of abnormal spindle function and cytokinesis inhibition in mitotic cells od Allium cepa by the organophosphorus insecticide fensulfotion. Cytobios. 1985; 42: 147-155.
  • [18] Sharma, CBSR. Plant meristems as monitors of genetic toxicity of environmental chemicals. Curr. Sci. 1983; 52(21): 1000-1002.
  • [19] Saxena PN, Chauhan LKS, Gupta, SK. Cytogenetic effects of commercial formulation of cypermethrin in root meristem cells of Allium sativum: Spectroscopic basis of chromosome damage. Toxicology. 2005; 216: 244-252.
  • [20] Liman R, Cigerci IH, Akyıl D, Eren Y, Konuk, M. Determination of genotoxicity of Fenaminosulf by Allium and Comet Tests. Pestic Biochem Phys. 2011; 99: 61-64.
  • [21] Gümüş M, Sert Y, Koca İ. Synthesis, characterization and theoretical studies of novel sulfonamide-aldehydes derivatives having tautomeric forms. Org Commun. 2019; 12(4): 176-187.
  • [22] Özkan S, Liman R. Cytotoxicity and genotoxicity in Allium cepa L. root meristem cells exposed to the herbicide penoxsulam. CBU Journal Of Science. 2019; 15(2): 221-226.
  • [23] Badr A. Cytogenetic activities of 3 sulphonamides. Mutat Res Lett. 1982; 104(1-3): 95-100.
  • [24] Leme DM, Marin-Morales MA. Allium cepa test in environmental monitoring: A review on its application. Mutat Res. 2009: 682, 71-81.
  • [25] Quiwei Y, Quiuhong Y, Sicheng H. The effects of benzamide on the variation in the root tip cells of Vicia faba. Acta Agric Bor Sin. 1994; 9(1): 87-91.
  • [26] Maldonado A, Pardo EG, Gutierrez C. Sister-chromatid exchange (SCE) elimination kinetics in BrdUrd-treated cells irradiated with visible light. Mutat Res-Fund Mol M. 1988; 197(1): 117-125.
  • [27] Maslat AO, Al-Hamdany R, Fataftah Z, Mahrath AJ, Abussaud MJ. Genotoxicity, antifungal and antibacterial activity of newly synthesized N-(3-phthalidyl)amines and o-benzoyl benzamide derivatives. Toxicol Environ Chem. 2003; 85(4-6): 149-157.
There are 27 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mehmet Gümüş 0000-0001-9262-7940

Halil Erhan Eroğlu 0000-0002-4509-4712

Nisa Gümüş 0000-0002-5067-3874

Emre Yağcı 0000-0001-9460-4857

Project Number 6602c-ASYO/19-266.
Publication Date December 30, 2020
Published in Issue Year 2020 Volume: 9 Issue: 2

Cite

APA Gümüş, M., Eroğlu, H. E., Gümüş, N., Yağcı, E. (2020). Cytotoxic and Genotoxic Effects of Some Azo Dyes in Allium cepa Root Tip Cells. Türk Doğa Ve Fen Dergisi, 9(2), 57-63. https://doi.org/10.46810/tdfd.790808
AMA Gümüş M, Eroğlu HE, Gümüş N, Yağcı E. Cytotoxic and Genotoxic Effects of Some Azo Dyes in Allium cepa Root Tip Cells. TJNS. December 2020;9(2):57-63. doi:10.46810/tdfd.790808
Chicago Gümüş, Mehmet, Halil Erhan Eroğlu, Nisa Gümüş, and Emre Yağcı. “Cytotoxic and Genotoxic Effects of Some Azo Dyes in Allium Cepa Root Tip Cells”. Türk Doğa Ve Fen Dergisi 9, no. 2 (December 2020): 57-63. https://doi.org/10.46810/tdfd.790808.
EndNote Gümüş M, Eroğlu HE, Gümüş N, Yağcı E (December 1, 2020) Cytotoxic and Genotoxic Effects of Some Azo Dyes in Allium cepa Root Tip Cells. Türk Doğa ve Fen Dergisi 9 2 57–63.
IEEE M. Gümüş, H. E. Eroğlu, N. Gümüş, and E. Yağcı, “Cytotoxic and Genotoxic Effects of Some Azo Dyes in Allium cepa Root Tip Cells”, TJNS, vol. 9, no. 2, pp. 57–63, 2020, doi: 10.46810/tdfd.790808.
ISNAD Gümüş, Mehmet et al. “Cytotoxic and Genotoxic Effects of Some Azo Dyes in Allium Cepa Root Tip Cells”. Türk Doğa ve Fen Dergisi 9/2 (December 2020), 57-63. https://doi.org/10.46810/tdfd.790808.
JAMA Gümüş M, Eroğlu HE, Gümüş N, Yağcı E. Cytotoxic and Genotoxic Effects of Some Azo Dyes in Allium cepa Root Tip Cells. TJNS. 2020;9:57–63.
MLA Gümüş, Mehmet et al. “Cytotoxic and Genotoxic Effects of Some Azo Dyes in Allium Cepa Root Tip Cells”. Türk Doğa Ve Fen Dergisi, vol. 9, no. 2, 2020, pp. 57-63, doi:10.46810/tdfd.790808.
Vancouver Gümüş M, Eroğlu HE, Gümüş N, Yağcı E. Cytotoxic and Genotoxic Effects of Some Azo Dyes in Allium cepa Root Tip Cells. TJNS. 2020;9(2):57-63.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.