Review
BibTex RIS Cite

Gıdaların Raf Ömürleri İçin Yeni Bir Yaklaşım: Arı Ürünleri İle Yenilebilir Kaplamalar

Year 2020, Volume: 9 Issue: 2, 211 - 220, 30.12.2020
https://doi.org/10.46810/tdfd.810214

Abstract

Arıcılık faaliyetleri sonucu üretilen ürünler hem insan beslenmesi hem de ekonomik olarak büyük önem taşır. Bu ürünler gıda, kimya, sağlık, kozmetik alanlarında geniş kullanıma sahiptir. Arıcılıkta üretimi en çok bilinen ve yapılan ürünler bal ve bal mumudur ancak polen, propolis, arı sütü, arı zehri ve arı ekmeği (perga) ticari değeri olan önemli arı ürünlerdir. Gıdaların raf ömrünü artırmak için gıda maddelerinin ambalajlanmasında kullanılan ve gıda maddesi ile birlikte tüketilebilen maddeler yenilebilir ambalajlar olarak adlandırılmaktadır. Yenilebilir ambalajlar, film, kaplama, tabaka ya da torba olarak üretilebilir. Yenilebilir kaplamada polisakkaritler, lipidler, proteinler, organik çözücüler, plastikleştiriciler, antioksidan ajanlar, antimikrobiyal ajanlar ve yüzey aktif maddeleri kullanılmaktadır. Yenilebilir kaplamalar, işlenmiş gıdalarda duyusal özelliklerin iyileştirilmek için renk ve aroma bileşiklerini taşıyıcısı olarak da kullanılabilir. Son yıllarda yenilebilir kaplamalarda etkili ve güvenilir kaplamalar yapmak için arı ürünleri de kullanıldığı anlaşılmaktadır. Mevcut kaplama materyalleri arı ürünleriyle birleştirilerek kaplamanın işlevsel özellikleri geliştirilebilir. Arı ürünleri içeriğindeki biyoaktif bileşenler kaplama materyalleri ile etkileşime girerek mevcut kaplamanın bariyer özelliklerini, esnekliğini, yapısal özelliklerini arttırmaktadır. Arı ürünleri antibakteriyel, antioksidan, antitümöral, antiviral vb. özellikleri nedeniyle taşıyıcı sistemler olarak kullanılabilir. Yenilebilir bir kaplama, gıda kalitesini korumak için umut verici sonuçlar veren modifiye atmosfer yöntemlerinden biridir. Yöntem, gaz değişimini önlemek için ürünün yüzeyinde kaplama tabakası olarak biyolojik veya kimyasal malzemeler kullanır ve böylece meyve gibi gıdaların olgunlaşma sürecini durdurur. Bu nedenle, bu makale, arı ürünlerinin yenilebilir bir kaplama olarak kullanılabilme potansiyeli ve literatürde arı ürünlerinin yenilebilir kaplama olarak kullanılan çalışmaları gözden geçirmeyi amaçlamıştır.

References

  • [1] Cimpoiu C, Hosu A, Miclaus V. and Puscas A. Determination of the floral origin of some Romanian honeys on the basis of physical and biochemical properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013;100:149-154.
  • [2] Chua, LS, Lee, JY and Chan, GF. Characterization of the proteins in honey. Analytical Letters. 2015;48(4):697-709. [3] Boukraâ, L. Healing properties of honey. Honey In Traditional and Modern Medicine. 2014; 37-52.
  • [4] Zuluaga, C, Martínez, A, Fernández, J, López-Baldó, J, Quiles, A and Rodrigo, D. Effect of high pressure processing on carotenoid and phenolic compounds, antioxidant capacity, and microbial counts of bee-pollen paste and bee-pollen-based beverage. Innovative Food Science & Emerging Technologies. 2016;37:10-17.
  • [5] Komosinska-Vassev, K, Olczyk, P, Kaźmierczak, J, Mencner, L and Olczyk, K. Bee Pollen: Chemical Composition and Therapeutic Application. Evidence-Based Complementary and Alternative Medicine. 2015;2015:1-6.
  • [6] Campos, MGR, Bogdanov, S, de Almeida-Muradian, LB, Szczesna, T, Mancebo, Y, Frigerio, C and Ferreira, F. Pollen composition and standardisation of analytical methods. Journal of Apicultural Research. 2008;47(2):154-161.
  • [7] Carpes, ST, Begnini, R, Alencar, SMd and Masson, ML. Study of preparations of bee pollen extracts, antioxidant and antibacterial activity. Ciência e agrotecnologia. 2007;31(6):1818-1825.
  • [8] Pascoal, A, Rodrigues, S, Teixeira, A, Feás, X and Estevinho, LM. Biological activities of commercial bee pollens: antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food and Chemical Toxicology. 2014;63:233-239.
  • [9] Pietta, P, Gardana, C and Pietta, A. Analytical methods for quality control of propolis. Fitoterapia. 2002;73:S7-S20.
  • [10] Walker, P and Crane, E. Constituents of propolis. Apidologie. 1987;18(4):327-334.
  • [11] Serkedjieva, J, Manolova, N and Bankova, V. Anti-influenza virus effect of some propolis constituents and their analogues (esters of substituted cinnamic acids). Journal of Natural Products. 1992;55(3):294-297.
  • [12] Simuth, J. Some properties of the main protein of honeybee (Apis mellifera) royal jelly. Apidologie. 2001;32(1):69-80.
  • [13] Ramadan, MF and Al-Ghamdi, A. Bioactive compounds and health-promoting properties of royal jelly: A review. Journal of Functional Foods. 2012;4(1):39-52.
  • [14] Nagai, T, Inoue, R, Suzuki, N and Nagashima, T. Antioxidant properties of enzymatic hydrolysates from royal jelly. Journal of Medicinal Food. 2006;9(3):363-367.
  • [15] Raghuraman, H and Chattopadhyay, A. Melittin: a membrane-active peptide with diverse functions. Bioscience Reports. 2007;27(4-5):189-223.
  • [16] Socarras, KM, Theophilus, PA, Torres, JP, Gupta, K and Sapi, E. Antimicrobial activity of bee venom and melittin against Borrelia burgdorferi. Antibiotics. 2017;6(4):31.
  • [17] Wehbe, R, Frangieh, J, Rima, M, El Obeid, D, Sabatier, J-M and Fajloun, Z. Bee venom: overview of main compounds and bioactivities for therapeutic interests. Molecules. 2019; 24(16):2997.
  • [18] Fuenmayor, B, Zuluaga, D, Díaz, M, Quicazán de C, M, Cosio, M and Mannino, S. Evaluation of the physicochemical and functional properties of Colombian bee pollen. Revista MVZ Córdoba. 2014;19(1):4003-4014.
  • [19] Urcan, AC, Al Marghitas, L, Dezmirean, DS, Bobis, O, Bonta, V, Muresan, CI and Margaoan, R. Chemical composition and biological activities of beebread–review. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies. 2017;74(1):6-14.
  • [20] Kolayli, S and Keskin, M. 2020. Natural bee products and their apitherapeutic applications. Eds. Studies in Natural Products Chemistry, Elsevier. 2020;Vol.66:175-196.
  • [21] Dhall, R. Advances in edible coatings for fresh fruits and vegetables: a review. Critical Reviews in Food Science and Nutrition. 2013;53(5):435-450.
  • [22] Rai, M, Ingle, AP, Gupta, I, Pandit, R, Paralikar, P, Gade, A, Chaud, MV and dos Santos, CA. Smart nanopackaging for the enhancement of food shelf life. Environmental Chemistry Letters. 2019;17(1):277-290.
  • [23] Hassan, B, Chatha, SAS, Hussain, AI, Zia, KM and Akhtar, N. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules. 2018;109:1095-1107.
  • [24] Damodaran, S. Amino acids, peptides and proteins. CRC Press: Boca Raton, FL. 2008.
  • [25] Torres, JA, Motoki, M and Karel, M. Microbial stabilization of intermediate moisture food surfaces I. Control of surface preservative concentration. Journal of Food Processing and Preservation. 1985;9(2):75-92.
  • [26] Vojdani, F and Torres, JA. Potassium sorbate permeability of methylcellulose and hydroxypropyl methylcellulose coatings: Effect of fatty acids. Journal of Food Science. 1990;55(3):841-846.
  • [27] Rodriguez, M, Ramos, V and Agulló, E. Antimicrobial action of chitosan against spoilage organisms in precooked pizza. Journal of Food Science. 2003;68(1):271-274.
  • [28] Park, SI, Stan, SD, Daeschel, MA and Zhao, Y. Antifungal coatings on fresh strawberries (Fragaria× ananassa) to control mold growth during cold storage. Journal of Food Science. 2005;70(4):M202-M207.
  • [29] Nisperos-Carriedo, M O, Shaw, PE and Baldwin, E. Changes in volatile flavor components of pineapple orange juice as influenced by the application of lipid and composite films. Journal of Agricultural and Food Chemistry. 1990;38(6):1382-1387.
  • [30] Pech-Canul, AdlC, Ortega, D, García-Triana, A and González-Silva, N. A Brief Review of Edible Coating Materials for the Microencapsulation of Probiotics. Coatings. 2020;10(3): 197.
  • [31] Park SK, Rhee CO, Bae DH, Hettiarachchy NS. Mechanical properties and water-vapor permeability of soy-protein films affected by calcium salts and glucono- d -lactone. J Agric Food Chem. 2001;49:2308-2312.
  • [32] Zivanovic S, Chi S, Draughon AE. Antimicrobial activity of chitosan films enriched with essential oils . J Food Chem. 2005;70(1):M45-M51.
  • [33] Hoagland, PD and Parris, N. Chitosan/pectin laminated films. Journal of Agricultural and Food Chemistry. 1996;44(7):1915-1919.
  • [34] Shao, P, Zhang, H, Niu, B and Jiang, L. 2018. Antibacterial activities of R-(+)-Limonene emulsion stabilized by Ulva fasciata polysaccharide for fruit preservation. International Journal of Biological Macromolecules. 2018;111:1273-1280.
  • [35] Khaliq, G, Mohamed, MTM, Ali, A, Ding, P and Ghazali, HM. Effect of gum arabic coating combined with calcium chloride on physico-chemical and qualitative properties of mango (Mangifera indica L.) fruit during low temperature storage. Scientia Horticulturae. 2015;190:187-194.
  • [36] Jongsri, P, Wangsomboondee, T, Rojsitthisak, P and Seraypheap, K. Effect of molecular weights of chitosan coating on postharvest quality and physicochemical characteristics of mango fruit. LWT. 2016;73:28-36.
  • [37] Maringgal, B, Hashim, N, Tawakkal, ISMA and Mohamed, MTM. Recent advance in edible coating and its effect on fresh/fresh-cut fruits quality. Trends in Food Science & Technology.2020;96:253-267.
  • [38] Pastor, C, Sánchez-González, L, Marcilla, A, Chiralt, A, Cháfer, M, & González-Martínez, C. Quality and safety of table grapes coated with hydroxypropylmethylcellulose edible coatings containing propolis extract. Postharvest Biology and Technology. 2011;60(1):64-70.
  • [39] Melo, NFCB, de MendonçaSoares, BL, Diniz, KM, Leal, CF, Canto, D, Flores, MA, da Costa Tavares-Filho, JH, Galembeck, A, Stamford, TLM and Stamford-Arnaud, TM. Effects of fungal chitosan nanoparticles as eco-friendly edible coatings on the quality of postharvest table grapes. Postharvest Biology and Technology. 2018;139:56-66.
  • [40] Yan, J, Luo, Z, Ban, Z, Lu, H, Li, D, Yang, D, Aghdam, MS and Li, L. The effect of the layer-by-layer (LBL) edible coating on strawberry quality and metabolites during storage. Postharvest Biology and Technology. 2019;147:29-38.
  • [41] Mannozzi, C, Tylewicz, U, Chinnici, F, Siroli, L, Rocculi, P, Dalla Rosa, M and Romani, S. Effects of chitosan based coatings enriched with procyanidin by-product on quality of fresh blueberries during storage. Food Chemistry. 2018;251:18-24.
  • [42] Maringgal, B, Hashim, N, Tawakkal, ISMA., Mohamed, MTM, Hamzah, MH and Shukor, NIA. The causal agent of anthracnose in papaya fruit and control by three different Malaysian stingless bee honeys, and the chemical profile. Scientia Horticulturae. 2019;257:108590.
  • [43] Guimaraes, A, Abrunhosa, L, Pastrana, L M, & Cerqueira, M A. Edible films and coatings as carriers of living microorganisms: a new strategy towards biopreservation and healthier foods. Comprehensive Reviews in Food Science and Food Safety. 2018;17(3):594-614.
  • [44] Jafarin, S, & Mohammadnejad, P. Effect of propolis coating on oil uptake and quality properties of fried potato (Solanum tuberosum) strips. Asian Food Science Journal. 2020;1-8.
  • [45] Mladenoska, I. The potential application of novel beeswax edible coatings containing coconut oil in the minimal processing of fruits. Advanced Technologies. 2012;1(2):26-34.
  • [46] Mironescu, M, Fratila, L, Hupert, A, & Mironescu, I D. Obtaining and characterisation of starch-based edible films ıncorporating honey, propolis and bee bread. Acta Universitatis Cibiniensis. Series E: Food Technology. 2019;23(2):193-198.
  • [47] Siripatrawan, U and Vitchayakitti, W. Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocolloids. 2016;61:695-702.
  • [48] Pobiega, K, Kraśniewska, K, & Gniewosz, M. Application of propolis in antimicrobial and antioxidative protection of food quality–A review. Trends in Food Science & Technology. 2019;83:53-62.
  • [49] Correa-Pacheco, ZN, Bautista-Baños, S, de Lorena Ramos-García, M, del Carmen Martínez-González, M and Hernández-Romano, J. Physicochemical characterization and antimicrobial activity of edible propolis-chitosan nanoparticle films. Progress in Organic Coatings. 2019;137:105326.
  • [50] Martínez-González, M D C, Bautista-Baños, S, Correa-Pacheco, Z N, Corona-Rangel, M L, Ventura-Aguilar, R I, del Río-García, J C, & Ramos-García, MDL. Effect of nanostructured chitosan/propolis coatings on the quality and antioxidant capacity of strawberries during storage. Coatings. 2020;10(2):90.
  • [51] Bodini, R B, Sobral, PJA, Favaro-Trindade, C S, & Carvalho, RA. Properties of gelatin-based films with added ethanol–propolis extract. LWT-Food Science and Technology, 2013;51(1):104-110.
  • [52] Siripatrawan, U, & Harte, B R. Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids. 2010;24(8): 770-775.
  • [53] Yen, M T, Yang, J H, & Mau, J L.nAntioxidant properties of chitosan from crab shells. Carbohydrate Polymers. 2008;74(4):840-844.
  • [54] Kumazawa, S, Hamasaka, T, & Nakayama, T. Antioxidant activity of propolis of various geographic origins. Food Chemistry. 2004;84(3):329-339.
  • [55] Nagai, T, Inoue, R, Inoue, H, & Suzuki, N. Preparation and antioxidant properties of water extract of propolis.Food Chemistry. 2003;80(1):29-33.
Year 2020, Volume: 9 Issue: 2, 211 - 220, 30.12.2020
https://doi.org/10.46810/tdfd.810214

Abstract

References

  • [1] Cimpoiu C, Hosu A, Miclaus V. and Puscas A. Determination of the floral origin of some Romanian honeys on the basis of physical and biochemical properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013;100:149-154.
  • [2] Chua, LS, Lee, JY and Chan, GF. Characterization of the proteins in honey. Analytical Letters. 2015;48(4):697-709. [3] Boukraâ, L. Healing properties of honey. Honey In Traditional and Modern Medicine. 2014; 37-52.
  • [4] Zuluaga, C, Martínez, A, Fernández, J, López-Baldó, J, Quiles, A and Rodrigo, D. Effect of high pressure processing on carotenoid and phenolic compounds, antioxidant capacity, and microbial counts of bee-pollen paste and bee-pollen-based beverage. Innovative Food Science & Emerging Technologies. 2016;37:10-17.
  • [5] Komosinska-Vassev, K, Olczyk, P, Kaźmierczak, J, Mencner, L and Olczyk, K. Bee Pollen: Chemical Composition and Therapeutic Application. Evidence-Based Complementary and Alternative Medicine. 2015;2015:1-6.
  • [6] Campos, MGR, Bogdanov, S, de Almeida-Muradian, LB, Szczesna, T, Mancebo, Y, Frigerio, C and Ferreira, F. Pollen composition and standardisation of analytical methods. Journal of Apicultural Research. 2008;47(2):154-161.
  • [7] Carpes, ST, Begnini, R, Alencar, SMd and Masson, ML. Study of preparations of bee pollen extracts, antioxidant and antibacterial activity. Ciência e agrotecnologia. 2007;31(6):1818-1825.
  • [8] Pascoal, A, Rodrigues, S, Teixeira, A, Feás, X and Estevinho, LM. Biological activities of commercial bee pollens: antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food and Chemical Toxicology. 2014;63:233-239.
  • [9] Pietta, P, Gardana, C and Pietta, A. Analytical methods for quality control of propolis. Fitoterapia. 2002;73:S7-S20.
  • [10] Walker, P and Crane, E. Constituents of propolis. Apidologie. 1987;18(4):327-334.
  • [11] Serkedjieva, J, Manolova, N and Bankova, V. Anti-influenza virus effect of some propolis constituents and their analogues (esters of substituted cinnamic acids). Journal of Natural Products. 1992;55(3):294-297.
  • [12] Simuth, J. Some properties of the main protein of honeybee (Apis mellifera) royal jelly. Apidologie. 2001;32(1):69-80.
  • [13] Ramadan, MF and Al-Ghamdi, A. Bioactive compounds and health-promoting properties of royal jelly: A review. Journal of Functional Foods. 2012;4(1):39-52.
  • [14] Nagai, T, Inoue, R, Suzuki, N and Nagashima, T. Antioxidant properties of enzymatic hydrolysates from royal jelly. Journal of Medicinal Food. 2006;9(3):363-367.
  • [15] Raghuraman, H and Chattopadhyay, A. Melittin: a membrane-active peptide with diverse functions. Bioscience Reports. 2007;27(4-5):189-223.
  • [16] Socarras, KM, Theophilus, PA, Torres, JP, Gupta, K and Sapi, E. Antimicrobial activity of bee venom and melittin against Borrelia burgdorferi. Antibiotics. 2017;6(4):31.
  • [17] Wehbe, R, Frangieh, J, Rima, M, El Obeid, D, Sabatier, J-M and Fajloun, Z. Bee venom: overview of main compounds and bioactivities for therapeutic interests. Molecules. 2019; 24(16):2997.
  • [18] Fuenmayor, B, Zuluaga, D, Díaz, M, Quicazán de C, M, Cosio, M and Mannino, S. Evaluation of the physicochemical and functional properties of Colombian bee pollen. Revista MVZ Córdoba. 2014;19(1):4003-4014.
  • [19] Urcan, AC, Al Marghitas, L, Dezmirean, DS, Bobis, O, Bonta, V, Muresan, CI and Margaoan, R. Chemical composition and biological activities of beebread–review. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies. 2017;74(1):6-14.
  • [20] Kolayli, S and Keskin, M. 2020. Natural bee products and their apitherapeutic applications. Eds. Studies in Natural Products Chemistry, Elsevier. 2020;Vol.66:175-196.
  • [21] Dhall, R. Advances in edible coatings for fresh fruits and vegetables: a review. Critical Reviews in Food Science and Nutrition. 2013;53(5):435-450.
  • [22] Rai, M, Ingle, AP, Gupta, I, Pandit, R, Paralikar, P, Gade, A, Chaud, MV and dos Santos, CA. Smart nanopackaging for the enhancement of food shelf life. Environmental Chemistry Letters. 2019;17(1):277-290.
  • [23] Hassan, B, Chatha, SAS, Hussain, AI, Zia, KM and Akhtar, N. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules. 2018;109:1095-1107.
  • [24] Damodaran, S. Amino acids, peptides and proteins. CRC Press: Boca Raton, FL. 2008.
  • [25] Torres, JA, Motoki, M and Karel, M. Microbial stabilization of intermediate moisture food surfaces I. Control of surface preservative concentration. Journal of Food Processing and Preservation. 1985;9(2):75-92.
  • [26] Vojdani, F and Torres, JA. Potassium sorbate permeability of methylcellulose and hydroxypropyl methylcellulose coatings: Effect of fatty acids. Journal of Food Science. 1990;55(3):841-846.
  • [27] Rodriguez, M, Ramos, V and Agulló, E. Antimicrobial action of chitosan against spoilage organisms in precooked pizza. Journal of Food Science. 2003;68(1):271-274.
  • [28] Park, SI, Stan, SD, Daeschel, MA and Zhao, Y. Antifungal coatings on fresh strawberries (Fragaria× ananassa) to control mold growth during cold storage. Journal of Food Science. 2005;70(4):M202-M207.
  • [29] Nisperos-Carriedo, M O, Shaw, PE and Baldwin, E. Changes in volatile flavor components of pineapple orange juice as influenced by the application of lipid and composite films. Journal of Agricultural and Food Chemistry. 1990;38(6):1382-1387.
  • [30] Pech-Canul, AdlC, Ortega, D, García-Triana, A and González-Silva, N. A Brief Review of Edible Coating Materials for the Microencapsulation of Probiotics. Coatings. 2020;10(3): 197.
  • [31] Park SK, Rhee CO, Bae DH, Hettiarachchy NS. Mechanical properties and water-vapor permeability of soy-protein films affected by calcium salts and glucono- d -lactone. J Agric Food Chem. 2001;49:2308-2312.
  • [32] Zivanovic S, Chi S, Draughon AE. Antimicrobial activity of chitosan films enriched with essential oils . J Food Chem. 2005;70(1):M45-M51.
  • [33] Hoagland, PD and Parris, N. Chitosan/pectin laminated films. Journal of Agricultural and Food Chemistry. 1996;44(7):1915-1919.
  • [34] Shao, P, Zhang, H, Niu, B and Jiang, L. 2018. Antibacterial activities of R-(+)-Limonene emulsion stabilized by Ulva fasciata polysaccharide for fruit preservation. International Journal of Biological Macromolecules. 2018;111:1273-1280.
  • [35] Khaliq, G, Mohamed, MTM, Ali, A, Ding, P and Ghazali, HM. Effect of gum arabic coating combined with calcium chloride on physico-chemical and qualitative properties of mango (Mangifera indica L.) fruit during low temperature storage. Scientia Horticulturae. 2015;190:187-194.
  • [36] Jongsri, P, Wangsomboondee, T, Rojsitthisak, P and Seraypheap, K. Effect of molecular weights of chitosan coating on postharvest quality and physicochemical characteristics of mango fruit. LWT. 2016;73:28-36.
  • [37] Maringgal, B, Hashim, N, Tawakkal, ISMA and Mohamed, MTM. Recent advance in edible coating and its effect on fresh/fresh-cut fruits quality. Trends in Food Science & Technology.2020;96:253-267.
  • [38] Pastor, C, Sánchez-González, L, Marcilla, A, Chiralt, A, Cháfer, M, & González-Martínez, C. Quality and safety of table grapes coated with hydroxypropylmethylcellulose edible coatings containing propolis extract. Postharvest Biology and Technology. 2011;60(1):64-70.
  • [39] Melo, NFCB, de MendonçaSoares, BL, Diniz, KM, Leal, CF, Canto, D, Flores, MA, da Costa Tavares-Filho, JH, Galembeck, A, Stamford, TLM and Stamford-Arnaud, TM. Effects of fungal chitosan nanoparticles as eco-friendly edible coatings on the quality of postharvest table grapes. Postharvest Biology and Technology. 2018;139:56-66.
  • [40] Yan, J, Luo, Z, Ban, Z, Lu, H, Li, D, Yang, D, Aghdam, MS and Li, L. The effect of the layer-by-layer (LBL) edible coating on strawberry quality and metabolites during storage. Postharvest Biology and Technology. 2019;147:29-38.
  • [41] Mannozzi, C, Tylewicz, U, Chinnici, F, Siroli, L, Rocculi, P, Dalla Rosa, M and Romani, S. Effects of chitosan based coatings enriched with procyanidin by-product on quality of fresh blueberries during storage. Food Chemistry. 2018;251:18-24.
  • [42] Maringgal, B, Hashim, N, Tawakkal, ISMA., Mohamed, MTM, Hamzah, MH and Shukor, NIA. The causal agent of anthracnose in papaya fruit and control by three different Malaysian stingless bee honeys, and the chemical profile. Scientia Horticulturae. 2019;257:108590.
  • [43] Guimaraes, A, Abrunhosa, L, Pastrana, L M, & Cerqueira, M A. Edible films and coatings as carriers of living microorganisms: a new strategy towards biopreservation and healthier foods. Comprehensive Reviews in Food Science and Food Safety. 2018;17(3):594-614.
  • [44] Jafarin, S, & Mohammadnejad, P. Effect of propolis coating on oil uptake and quality properties of fried potato (Solanum tuberosum) strips. Asian Food Science Journal. 2020;1-8.
  • [45] Mladenoska, I. The potential application of novel beeswax edible coatings containing coconut oil in the minimal processing of fruits. Advanced Technologies. 2012;1(2):26-34.
  • [46] Mironescu, M, Fratila, L, Hupert, A, & Mironescu, I D. Obtaining and characterisation of starch-based edible films ıncorporating honey, propolis and bee bread. Acta Universitatis Cibiniensis. Series E: Food Technology. 2019;23(2):193-198.
  • [47] Siripatrawan, U and Vitchayakitti, W. Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocolloids. 2016;61:695-702.
  • [48] Pobiega, K, Kraśniewska, K, & Gniewosz, M. Application of propolis in antimicrobial and antioxidative protection of food quality–A review. Trends in Food Science & Technology. 2019;83:53-62.
  • [49] Correa-Pacheco, ZN, Bautista-Baños, S, de Lorena Ramos-García, M, del Carmen Martínez-González, M and Hernández-Romano, J. Physicochemical characterization and antimicrobial activity of edible propolis-chitosan nanoparticle films. Progress in Organic Coatings. 2019;137:105326.
  • [50] Martínez-González, M D C, Bautista-Baños, S, Correa-Pacheco, Z N, Corona-Rangel, M L, Ventura-Aguilar, R I, del Río-García, J C, & Ramos-García, MDL. Effect of nanostructured chitosan/propolis coatings on the quality and antioxidant capacity of strawberries during storage. Coatings. 2020;10(2):90.
  • [51] Bodini, R B, Sobral, PJA, Favaro-Trindade, C S, & Carvalho, RA. Properties of gelatin-based films with added ethanol–propolis extract. LWT-Food Science and Technology, 2013;51(1):104-110.
  • [52] Siripatrawan, U, & Harte, B R. Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids. 2010;24(8): 770-775.
  • [53] Yen, M T, Yang, J H, & Mau, J L.nAntioxidant properties of chitosan from crab shells. Carbohydrate Polymers. 2008;74(4):840-844.
  • [54] Kumazawa, S, Hamasaka, T, & Nakayama, T. Antioxidant activity of propolis of various geographic origins. Food Chemistry. 2004;84(3):329-339.
  • [55] Nagai, T, Inoue, R, Inoue, H, & Suzuki, N. Preparation and antioxidant properties of water extract of propolis.Food Chemistry. 2003;80(1):29-33.
There are 54 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Esra Mesci This is me 0000-0003-2020-9891

Nevzat Esim 0000-0001-5121-092X

Publication Date December 30, 2020
Published in Issue Year 2020 Volume: 9 Issue: 2

Cite

APA Mesci, E., & Esim, N. (2020). Gıdaların Raf Ömürleri İçin Yeni Bir Yaklaşım: Arı Ürünleri İle Yenilebilir Kaplamalar. Türk Doğa Ve Fen Dergisi, 9(2), 211-220. https://doi.org/10.46810/tdfd.810214
AMA Mesci E, Esim N. Gıdaların Raf Ömürleri İçin Yeni Bir Yaklaşım: Arı Ürünleri İle Yenilebilir Kaplamalar. TJNS. December 2020;9(2):211-220. doi:10.46810/tdfd.810214
Chicago Mesci, Esra, and Nevzat Esim. “Gıdaların Raf Ömürleri İçin Yeni Bir Yaklaşım: Arı Ürünleri İle Yenilebilir Kaplamalar”. Türk Doğa Ve Fen Dergisi 9, no. 2 (December 2020): 211-20. https://doi.org/10.46810/tdfd.810214.
EndNote Mesci E, Esim N (December 1, 2020) Gıdaların Raf Ömürleri İçin Yeni Bir Yaklaşım: Arı Ürünleri İle Yenilebilir Kaplamalar. Türk Doğa ve Fen Dergisi 9 2 211–220.
IEEE E. Mesci and N. Esim, “Gıdaların Raf Ömürleri İçin Yeni Bir Yaklaşım: Arı Ürünleri İle Yenilebilir Kaplamalar”, TJNS, vol. 9, no. 2, pp. 211–220, 2020, doi: 10.46810/tdfd.810214.
ISNAD Mesci, Esra - Esim, Nevzat. “Gıdaların Raf Ömürleri İçin Yeni Bir Yaklaşım: Arı Ürünleri İle Yenilebilir Kaplamalar”. Türk Doğa ve Fen Dergisi 9/2 (December 2020), 211-220. https://doi.org/10.46810/tdfd.810214.
JAMA Mesci E, Esim N. Gıdaların Raf Ömürleri İçin Yeni Bir Yaklaşım: Arı Ürünleri İle Yenilebilir Kaplamalar. TJNS. 2020;9:211–220.
MLA Mesci, Esra and Nevzat Esim. “Gıdaların Raf Ömürleri İçin Yeni Bir Yaklaşım: Arı Ürünleri İle Yenilebilir Kaplamalar”. Türk Doğa Ve Fen Dergisi, vol. 9, no. 2, 2020, pp. 211-20, doi:10.46810/tdfd.810214.
Vancouver Mesci E, Esim N. Gıdaların Raf Ömürleri İçin Yeni Bir Yaklaşım: Arı Ürünleri İle Yenilebilir Kaplamalar. TJNS. 2020;9(2):211-20.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.