Research Article
BibTex RIS Cite

Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures

Year 2020, Volume: 9 Issue: 2, 1 - 8, 30.12.2020
https://doi.org/10.46810/tdfd.822928

Abstract

There is an increasing demand in the synthesis of shape and size-controlled gold nanostructures (Au NSs) with greener methods. Therefore, we aimed to synthesize differently shaped and sized Au NSs using a greener technique under ambient conditions. In this study, we utilized pollen extracts of Corylus avellana, Juniperus oxycedrus and Pinus nigra species (collected from Kastamonu region of Turkey) for the synthesis. The extraction was performed in water in order to recover water soluble content from the pollen grains. The extracts were used to stabilize, and shape/size direct the HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer synthesized Au NSs. UV-vis, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) characterizations proved synthesis of spherical, anisotropic and large Au NSs with this benign approach. The obtained Au NSs were possible to separate small and large Au NSs through centrifugation. Chemistry of pollen extracts played key role on morphology and stability of the Au NSs. The findings, for the first time, is revealing the synthesis of large Au nanorod bundles (>300 nm) along with hexagonal and spherical Au NSs under ambient conditions using pollen grain extracts, whose maturation took 24h.

Supporting Institution

Kastamonu Üniversitesi

Project Number

KÜ-BAP01/2018-33

Thanks

Many thanks to Prof Muhammet S Toprak of KTH Royal Institute of Technology (Stockholm, Sweden) for his guidance and review of the manuscript. We acknowledge BIOMER center of İzmir Institute of Technology and Central Research Laboratory of Kastamonu University for SEM studies.

References

  • 1. Kharissova O V., Dias HVR, Kharisov BI, Pérez BO, Pérez VMJ. The greener synthesis of nanoparticles. Trends Biotechnol. 2013;31(4):240–8.
  • 2. Vijaya Kumar P, Mary Jelastin Kala S, Prakash KS. Green synthesis of gold nanoparticles using Croton Caudatus Geisel leaf extract and their biological studies. Mater Lett [Internet]. 2019;236:19–22. Available from: https://doi.org/10.1016/j.matlet.2018.10.025
  • 3. Makarov V V., Love AJ, Sinitsyna O V., Makarova SS, Yaminsky I V., Taliansky ME, et al. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae. 2014;6(1):35–44.
  • 4. Jamzad M, Kamari Bidkorpeh M. Green synthesis of iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity. J Nanostructure Chem [Internet]. 2020;10(3):193–201. Available from: https://doi.org/10.1007/s40097-020-00341-1
  • 5. Jenifer AA, Malaikozhundan B, Vijayakumar S, Anjugam M, Iswarya A, Vaseeharan B. Green Synthesis and Characterization of Silver Nanoparticles (AgNPs) Using Leaf Extract of Solanum nigrum and Assessment of Toxicity in Vertebrate and Invertebrate Aquatic Animals. J Clust Sci [Internet]. 2020;31(5):989–1002. Available from: https://doi.org/10.1007/s10876-019-01704-7
  • 6. Engelbrekt C, Sørensen KH, Zhang J, Welinder AC, Jensen PS, Ulstrup J. Green synthesis of gold nanoparticles with starch–glucose and application in bioelectrochemistry. J Mater Chem [Internet]. 2009;19(42):7839. Available from: http://xlink.rsc.org/?DOI=b911111e
  • 7. Dhanasekar NN, Rahul GR, Narayanan KB, Raman G, Sakthivel N. Green chemistry approach for the synthesis of gold nanoparticles using the fungus Alternaria sp. J Microbiol Biotechnol. 2015;25(7):1129–35.
  • 8. Jha M, Shimpi NG. Green synthesis of zero valent colloidal nanosilver targeting A549 lung cancer cell : In vitro cytotoxicity. J Genet Eng Biotechnol [Internet]. 2018;16(1):115–24. Available from: https://doi.org/10.1016/j.jgeb.2017.12.001
  • 9. Chung I, Rahuman AA, Marimuthu S, Kirthi AV, Anbarasan K, Padmini P, et al. Green synthesis of copper nanoparticles using eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp Ther Med. 2017;14(1):18–24. 10. Song JY, Kwon EY, Kim BS. Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng. 2010;33(1):159–64.
  • 11. Xiaohui Y, Xiuqin S, Yu W, Wei W, Yuhan S, Lixue H. Preparation of Spinous ZrO2 Microspheres with Tunable Shell and Chamber Structure by Controlling Pollen as a Nanoparticles Reactor. J Nanosci Nanotechnol. 2011;11(12):10369–73.
  • 12. Hajebi S, Homayouni M, Mahboobeh T, Moghaddam N, Shahraki F. Rapeseed flower pollen bio ‑ green synthesized silver nanoparticles : a promising antioxidant , anticancer and antiangiogenic compound. JBIC J Biol Inorg Chem [Internet]. 2019;24(3):395–404. Available from: https://doi.org/10.1007/s00775-019-01655-4
  • 13. Banu H, Renuka N, Faheem SM, Ismail R, Singh V, Saadatmand Z, et al. Gold and Silver Nanoparticles Biomimetically Synthesized Using Date Palm Pollen Extract-Induce Apoptosis and Regulate p53 and Bcl-2 Expression in Human Breast Adenocarcinoma Cells. Biol Trace Elem Res. 2018;186(1):122–34. 14. Sylvestre JP, Poulin S, Kabashin A V., Sacher E, Meunier M, Luong JHT. Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J Phys Chem B. 2004;108(43):16864–9.
  • 15. Pummer BG, Bauer H, Bernardi J, Chazallon B, Facq S, Lendl B, et al. Chemistry and morphology of dried-up pollen suspension residues. J Raman Spectrosc. 2013;44(12):1654–8.
  • 16. Feng ZF, Chen XF, Di DL. Online extraction and isolation of highly polar chemical constituents from Brassica napus L. pollen by high shear technique coupled with high-performance counter-current chromatography. J Sep Sci. 2012;35(5–6):625–32. 17. Pinar NM, Gu K, Yildiz A, Smith M. A 2-year aeropalynological survey of allergenic pollen in the atmosphere of Kastamonu , Turkey. Aerobiologia (Bologna). 2012;28:355–66.
  • 18. Türkmen Y, Çeter T, Pinar NM. Analysis of airborne pollen of Gümüşhane province in northeastern Turkey and its relationship with meteorological parameters. Turk J Botany. 2018;42(6):687–700.
  • 19. Mujtaba M, Kaya M, Ceter T. An investigation of pollen grain thermal diversity on species level. Commun Fac Sci Univ Ankara Ser C Biol. 2018;27(2):170–6.
  • 20. Seifert S, Merk V, Kneipp J. Identification of aqueous pollen extracts using surface enhanced Raman scattering (SERS) and pattern recognition methods. J Biophotonics. 2016;9(1–2):181–9.
  • 21. Acar A, Pınar NM, Şafak F, Silici S. Analysis of Airborne Pollen Grains in Kayseri , Turkey. Karaelmas Fen ve Mühendislik Derg. 2015;5(2):79–88.
  • 22. Zimmermann B, Kohler A. Infrared spectroscopy of pollen identifies plant species and genus as well as environmental conditions. PLoS One. 2014;9(4).
  • 23. Deng J, Cheng W, Yang G. A novel antioxidant activity index (AAU) for natural products using the DPPH assay. Food Chem [Internet]. 2011;125(4):1430–5. Available from: http://dx.doi.org/10.1016/j.foodchem.2010.10.031
  • 24. Hofmann T, Visi-rajczi E, Albert L. Antioxidant properties assessment of the cones of conifers through the combined evaluation of multiple antioxidant assays. Ind Crop Prod [Internet]. 2020;145(October 2019):111935. Available from: https://doi.org/10.1016/j.indcrop.2019.111935
  • 25. Castiglioni S, Astolfi P, Conti C, Monaci E, Stefano M, Carloni P. Morphological, physicochemical and FTIR spectroscopic properties of bee pollen loads from different botanical origin. Molecules. 2019;24(21).
  • 26. Depciuch J, Kasprzyk I, Drzymała E, Parlinska-Wojtan M. Identification of birch pollen species using FTIR spectroscopy. Aerobiologia (Bologna) [Internet]. 2018;34(4):525–38. Available from: https://doi.org/10.1007/s10453-018-9528-4
  • 27. Anjos O, Santos AJA, Dias T, Estevinho LM. Application of FTIR-ATR spectroscopy on the bee pollen characterization. J Apic Res [Internet]. 2017;56(3):210–8. Available from: http://dx.doi.org/10.1080/00218839.2017.1289657
  • 28. Lahlali R, Jiang Y, Kumar S, Karunakaran C, Liu X, Borondics F, et al. ATR-FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance. Front Plant Sci. 2014;5(DEC):1–10.
  • 29. Pappas CS, Tarantilis PA, Harizanis PC, Polissiou MG. New method for pollen identification by FT-IR spectroscopy. Appl Spectrosc. 2003;57(1):23–7.
  • 30. Sadik JDIKO. FTIR analysis of molecular composition changes in hazel pollen from unpolluted and urbanized areas. Aerobiologia (Bologna). 2017;33:1–12.
  • 31. Kędzierska-Matysek M, Matwijczuk A, Florek M, Barłowska J, Wolanciuk A, Matwijczuk A, et al. Application of FTIR spectroscopy for analysis of the quality of honey. BIO Web Conf. 2018;10:02008.
  • 32. Muthreich F, Zimmermann B, Birks HJB, Vila-Viçosa CM, Seddon AWR. Chemical variations in Quercus pollen as a tool for taxonomic identification: Implications for long-term ecological and biogeographical research. J Biogeogr. 2020;47(6):1298–309.
  • 33. Engelbrekt C, Sørensen KH, Zhang J, Welinder AC, Jensen PS, Ulstrup J. Green synthesis of gold nanoparticles with starch – glucose and application in bioelectrochemistry. J Mater Chem. 2009;19:7839–47.
  • 34. Steinigeweg D, Schütz M, Salehi M, Schlücker S. Fast and Cost-Effective Purifi cation of Gold Nanoparticles in the 20 – 250 nm Size Range by Continuous Density Gradient Centrifugation. Small. 2011;7(17):2443–8.
  • 35. Su X, Fu B, Yuan J. Gold nanocluster-coated gold nanorods for simultaneously enhanced photothermal performance and stability. Mater Lett [Internet]. 2017;188(October 2016):111–4. Available from: http://dx.doi.org/10.1016/j.matlet.2016.11.051
  • 36. Bhattacharya R, Patra CR, Wang S, Lu L, Yaszemski MJ, Mukhopadhyay D, et al. Assembly of gold nanoparticles in a rod-like fashion using proteins as templates. Adv Funct Mater. 2006;16(3):395–400.
  • 37. Yazgan I, Gümüş A, Gökkuş K, Demir MA, Evecen S, Sönmez HA, et al. On the effect of modified carbohydrates on the size and shape of gold and silver nanostructures. Nanomaterials. 2020;10(7):1–17.
  • 38. Sharma V, Park K, Srinivasarao M. Shape separation of gold nanorods using centrifugation. Proc Natl Acad Sci U S A. 2009;106(13):4981–5.
  • 39. Priecel P, Adekunle H, Herrera R, Zhong Z, Antonio J. Anisotropic gold nanoparticles : Preparation and applications in catalysis. Chinese J Catal [Internet]. 2016;37(10):1619–50. Available from: http://dx.doi.org/10.1016/S1872-2067(16)62475-0
  • 40. Burrows ND, Vartanian AM, Abadeer NS, Grzincic EM, Jacob LM, Lin W, et al. Anisotropic Nanoparticles and Anisotropic Surface Chemistry. J Phys Chem Lett. 2016;7(4):632–41.
  • 41. Ming T, Kou X, Chen H, Wang T, Tam HL, Cheah KW, et al. Ordered gold nanostructure assemblies formed by droplet evaporation. Angew Chemie - Int Ed. 2008;47(50):9685–90.

Polen Özütü Aracılı Altın Nanoparçacıkların Sentezi ve Karakterizasyonu

Year 2020, Volume: 9 Issue: 2, 1 - 8, 30.12.2020
https://doi.org/10.46810/tdfd.822928

Abstract

There is an increasing demand in the synthesis of shape and size-controlled gold nanostructures (Au NSs) with greener methods. Therefore, we aimed to synthesize differently shaped and sized Au NSs using a greener technique under ambient conditions. In this study, we utilized pollen extracts of Corylus avellana, Juniperus oxycedrus and Pinus nigra species (collected from Kastamonu region of Turkey) for the synthesis. The extraction was performed in water in order to recover water soluble content from the pollen grains. The extracts were used to stabilize, and shape/size direct the HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer synthesized Au NSs. UV-vis, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) characterizations proved synthesis of spherical, anisotropic and large Au NSs with this benign approach. The obtained Au NSs were possible to separate small and large Au NSs through centrifugation. Chemistry of pollen extracts played key role on morphology and stability of the Au NSs. The findings, for the first time, is revealing the synthesis of large Au nanorod bundles (>300 nm) along with hexagonal and spherical Au NSs under ambient conditions using pollen grain extracts, whose maturation took 24h.

Project Number

KÜ-BAP01/2018-33

References

  • 1. Kharissova O V., Dias HVR, Kharisov BI, Pérez BO, Pérez VMJ. The greener synthesis of nanoparticles. Trends Biotechnol. 2013;31(4):240–8.
  • 2. Vijaya Kumar P, Mary Jelastin Kala S, Prakash KS. Green synthesis of gold nanoparticles using Croton Caudatus Geisel leaf extract and their biological studies. Mater Lett [Internet]. 2019;236:19–22. Available from: https://doi.org/10.1016/j.matlet.2018.10.025
  • 3. Makarov V V., Love AJ, Sinitsyna O V., Makarova SS, Yaminsky I V., Taliansky ME, et al. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae. 2014;6(1):35–44.
  • 4. Jamzad M, Kamari Bidkorpeh M. Green synthesis of iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity. J Nanostructure Chem [Internet]. 2020;10(3):193–201. Available from: https://doi.org/10.1007/s40097-020-00341-1
  • 5. Jenifer AA, Malaikozhundan B, Vijayakumar S, Anjugam M, Iswarya A, Vaseeharan B. Green Synthesis and Characterization of Silver Nanoparticles (AgNPs) Using Leaf Extract of Solanum nigrum and Assessment of Toxicity in Vertebrate and Invertebrate Aquatic Animals. J Clust Sci [Internet]. 2020;31(5):989–1002. Available from: https://doi.org/10.1007/s10876-019-01704-7
  • 6. Engelbrekt C, Sørensen KH, Zhang J, Welinder AC, Jensen PS, Ulstrup J. Green synthesis of gold nanoparticles with starch–glucose and application in bioelectrochemistry. J Mater Chem [Internet]. 2009;19(42):7839. Available from: http://xlink.rsc.org/?DOI=b911111e
  • 7. Dhanasekar NN, Rahul GR, Narayanan KB, Raman G, Sakthivel N. Green chemistry approach for the synthesis of gold nanoparticles using the fungus Alternaria sp. J Microbiol Biotechnol. 2015;25(7):1129–35.
  • 8. Jha M, Shimpi NG. Green synthesis of zero valent colloidal nanosilver targeting A549 lung cancer cell : In vitro cytotoxicity. J Genet Eng Biotechnol [Internet]. 2018;16(1):115–24. Available from: https://doi.org/10.1016/j.jgeb.2017.12.001
  • 9. Chung I, Rahuman AA, Marimuthu S, Kirthi AV, Anbarasan K, Padmini P, et al. Green synthesis of copper nanoparticles using eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp Ther Med. 2017;14(1):18–24. 10. Song JY, Kwon EY, Kim BS. Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng. 2010;33(1):159–64.
  • 11. Xiaohui Y, Xiuqin S, Yu W, Wei W, Yuhan S, Lixue H. Preparation of Spinous ZrO2 Microspheres with Tunable Shell and Chamber Structure by Controlling Pollen as a Nanoparticles Reactor. J Nanosci Nanotechnol. 2011;11(12):10369–73.
  • 12. Hajebi S, Homayouni M, Mahboobeh T, Moghaddam N, Shahraki F. Rapeseed flower pollen bio ‑ green synthesized silver nanoparticles : a promising antioxidant , anticancer and antiangiogenic compound. JBIC J Biol Inorg Chem [Internet]. 2019;24(3):395–404. Available from: https://doi.org/10.1007/s00775-019-01655-4
  • 13. Banu H, Renuka N, Faheem SM, Ismail R, Singh V, Saadatmand Z, et al. Gold and Silver Nanoparticles Biomimetically Synthesized Using Date Palm Pollen Extract-Induce Apoptosis and Regulate p53 and Bcl-2 Expression in Human Breast Adenocarcinoma Cells. Biol Trace Elem Res. 2018;186(1):122–34. 14. Sylvestre JP, Poulin S, Kabashin A V., Sacher E, Meunier M, Luong JHT. Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J Phys Chem B. 2004;108(43):16864–9.
  • 15. Pummer BG, Bauer H, Bernardi J, Chazallon B, Facq S, Lendl B, et al. Chemistry and morphology of dried-up pollen suspension residues. J Raman Spectrosc. 2013;44(12):1654–8.
  • 16. Feng ZF, Chen XF, Di DL. Online extraction and isolation of highly polar chemical constituents from Brassica napus L. pollen by high shear technique coupled with high-performance counter-current chromatography. J Sep Sci. 2012;35(5–6):625–32. 17. Pinar NM, Gu K, Yildiz A, Smith M. A 2-year aeropalynological survey of allergenic pollen in the atmosphere of Kastamonu , Turkey. Aerobiologia (Bologna). 2012;28:355–66.
  • 18. Türkmen Y, Çeter T, Pinar NM. Analysis of airborne pollen of Gümüşhane province in northeastern Turkey and its relationship with meteorological parameters. Turk J Botany. 2018;42(6):687–700.
  • 19. Mujtaba M, Kaya M, Ceter T. An investigation of pollen grain thermal diversity on species level. Commun Fac Sci Univ Ankara Ser C Biol. 2018;27(2):170–6.
  • 20. Seifert S, Merk V, Kneipp J. Identification of aqueous pollen extracts using surface enhanced Raman scattering (SERS) and pattern recognition methods. J Biophotonics. 2016;9(1–2):181–9.
  • 21. Acar A, Pınar NM, Şafak F, Silici S. Analysis of Airborne Pollen Grains in Kayseri , Turkey. Karaelmas Fen ve Mühendislik Derg. 2015;5(2):79–88.
  • 22. Zimmermann B, Kohler A. Infrared spectroscopy of pollen identifies plant species and genus as well as environmental conditions. PLoS One. 2014;9(4).
  • 23. Deng J, Cheng W, Yang G. A novel antioxidant activity index (AAU) for natural products using the DPPH assay. Food Chem [Internet]. 2011;125(4):1430–5. Available from: http://dx.doi.org/10.1016/j.foodchem.2010.10.031
  • 24. Hofmann T, Visi-rajczi E, Albert L. Antioxidant properties assessment of the cones of conifers through the combined evaluation of multiple antioxidant assays. Ind Crop Prod [Internet]. 2020;145(October 2019):111935. Available from: https://doi.org/10.1016/j.indcrop.2019.111935
  • 25. Castiglioni S, Astolfi P, Conti C, Monaci E, Stefano M, Carloni P. Morphological, physicochemical and FTIR spectroscopic properties of bee pollen loads from different botanical origin. Molecules. 2019;24(21).
  • 26. Depciuch J, Kasprzyk I, Drzymała E, Parlinska-Wojtan M. Identification of birch pollen species using FTIR spectroscopy. Aerobiologia (Bologna) [Internet]. 2018;34(4):525–38. Available from: https://doi.org/10.1007/s10453-018-9528-4
  • 27. Anjos O, Santos AJA, Dias T, Estevinho LM. Application of FTIR-ATR spectroscopy on the bee pollen characterization. J Apic Res [Internet]. 2017;56(3):210–8. Available from: http://dx.doi.org/10.1080/00218839.2017.1289657
  • 28. Lahlali R, Jiang Y, Kumar S, Karunakaran C, Liu X, Borondics F, et al. ATR-FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance. Front Plant Sci. 2014;5(DEC):1–10.
  • 29. Pappas CS, Tarantilis PA, Harizanis PC, Polissiou MG. New method for pollen identification by FT-IR spectroscopy. Appl Spectrosc. 2003;57(1):23–7.
  • 30. Sadik JDIKO. FTIR analysis of molecular composition changes in hazel pollen from unpolluted and urbanized areas. Aerobiologia (Bologna). 2017;33:1–12.
  • 31. Kędzierska-Matysek M, Matwijczuk A, Florek M, Barłowska J, Wolanciuk A, Matwijczuk A, et al. Application of FTIR spectroscopy for analysis of the quality of honey. BIO Web Conf. 2018;10:02008.
  • 32. Muthreich F, Zimmermann B, Birks HJB, Vila-Viçosa CM, Seddon AWR. Chemical variations in Quercus pollen as a tool for taxonomic identification: Implications for long-term ecological and biogeographical research. J Biogeogr. 2020;47(6):1298–309.
  • 33. Engelbrekt C, Sørensen KH, Zhang J, Welinder AC, Jensen PS, Ulstrup J. Green synthesis of gold nanoparticles with starch – glucose and application in bioelectrochemistry. J Mater Chem. 2009;19:7839–47.
  • 34. Steinigeweg D, Schütz M, Salehi M, Schlücker S. Fast and Cost-Effective Purifi cation of Gold Nanoparticles in the 20 – 250 nm Size Range by Continuous Density Gradient Centrifugation. Small. 2011;7(17):2443–8.
  • 35. Su X, Fu B, Yuan J. Gold nanocluster-coated gold nanorods for simultaneously enhanced photothermal performance and stability. Mater Lett [Internet]. 2017;188(October 2016):111–4. Available from: http://dx.doi.org/10.1016/j.matlet.2016.11.051
  • 36. Bhattacharya R, Patra CR, Wang S, Lu L, Yaszemski MJ, Mukhopadhyay D, et al. Assembly of gold nanoparticles in a rod-like fashion using proteins as templates. Adv Funct Mater. 2006;16(3):395–400.
  • 37. Yazgan I, Gümüş A, Gökkuş K, Demir MA, Evecen S, Sönmez HA, et al. On the effect of modified carbohydrates on the size and shape of gold and silver nanostructures. Nanomaterials. 2020;10(7):1–17.
  • 38. Sharma V, Park K, Srinivasarao M. Shape separation of gold nanorods using centrifugation. Proc Natl Acad Sci U S A. 2009;106(13):4981–5.
  • 39. Priecel P, Adekunle H, Herrera R, Zhong Z, Antonio J. Anisotropic gold nanoparticles : Preparation and applications in catalysis. Chinese J Catal [Internet]. 2016;37(10):1619–50. Available from: http://dx.doi.org/10.1016/S1872-2067(16)62475-0
  • 40. Burrows ND, Vartanian AM, Abadeer NS, Grzincic EM, Jacob LM, Lin W, et al. Anisotropic Nanoparticles and Anisotropic Surface Chemistry. J Phys Chem Lett. 2016;7(4):632–41.
  • 41. Ming T, Kou X, Chen H, Wang T, Tam HL, Cheah KW, et al. Ordered gold nanostructure assemblies formed by droplet evaporation. Angew Chemie - Int Ed. 2008;47(50):9685–90.
There are 38 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Fatma Bakar 0000-0002-3999-0983

Hamide Sönmez This is me 0000-0002-2580-9792

Senanur Evecen This is me 0000-0001-6325-2123

Buse Turan This is me 0000-0003-4196-8969

Mehmet Demir This is me 0000-0001-7726-431X

Abdurrahman Gümüş This is me 0000-0003-2993-5769

Talip Çeter 0000-0003-3626-1758

İdris Yazgan 0000-0002-0264-1253

Project Number KÜ-BAP01/2018-33
Publication Date December 30, 2020
Published in Issue Year 2020 Volume: 9 Issue: 2

Cite

APA Bakar, F., Sönmez, H., Evecen, S., Turan, B., et al. (2020). Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures. Türk Doğa Ve Fen Dergisi, 9(2), 1-8. https://doi.org/10.46810/tdfd.822928
AMA Bakar F, Sönmez H, Evecen S, Turan B, Demir M, Gümüş A, Çeter T, Yazgan İ. Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures. TJNS. December 2020;9(2):1-8. doi:10.46810/tdfd.822928
Chicago Bakar, Fatma, Hamide Sönmez, Senanur Evecen, Buse Turan, Mehmet Demir, Abdurrahman Gümüş, Talip Çeter, and İdris Yazgan. “Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures”. Türk Doğa Ve Fen Dergisi 9, no. 2 (December 2020): 1-8. https://doi.org/10.46810/tdfd.822928.
EndNote Bakar F, Sönmez H, Evecen S, Turan B, Demir M, Gümüş A, Çeter T, Yazgan İ (December 1, 2020) Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures. Türk Doğa ve Fen Dergisi 9 2 1–8.
IEEE F. Bakar, H. Sönmez, S. Evecen, B. Turan, M. Demir, A. Gümüş, T. Çeter, and İ. Yazgan, “Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures”, TJNS, vol. 9, no. 2, pp. 1–8, 2020, doi: 10.46810/tdfd.822928.
ISNAD Bakar, Fatma et al. “Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures”. Türk Doğa ve Fen Dergisi 9/2 (December 2020), 1-8. https://doi.org/10.46810/tdfd.822928.
JAMA Bakar F, Sönmez H, Evecen S, Turan B, Demir M, Gümüş A, Çeter T, Yazgan İ. Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures. TJNS. 2020;9:1–8.
MLA Bakar, Fatma et al. “Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures”. Türk Doğa Ve Fen Dergisi, vol. 9, no. 2, 2020, pp. 1-8, doi:10.46810/tdfd.822928.
Vancouver Bakar F, Sönmez H, Evecen S, Turan B, Demir M, Gümüş A, Çeter T, Yazgan İ. Synthesis and Characterization of Pollen Extract Mediated Gold Nanostructures. TJNS. 2020;9(2):1-8.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.