Research Article
BibTex RIS Cite

Determining Electromagnetic Energy Resolution of a Combined GdTaO4 Crystal-Photodetector System with a Simulation Study

Year 2021, Volume: 10 Issue: 1, 83 - 89, 25.06.2021
https://doi.org/10.46810/tdfd.821733

Abstract

References

  • [1] Ablikim M, An ZH, Bai JZ, Berger N, Bian JM, Cai X, et al. Design and construction of the BesIII detector. Nuclear Instruments and Methods in Physics Research Section A. 2010; 614(3):345-399.
  • [2] Lewandowski B, for the BaBaR EMC Group. The BaBar electromagnetic calorimeter. Nuclear Instruments and Methods in Physics Research Section A. 2002; 494(1-3):303-307.
  • [3] Miyabayashi K, for the Belle Electromagnetic Calorimeter Group. Belle electromagnetic calorimeter. Nuclear Instruments and Methods in Physics Research Section A. 2002; 494(1-3):298-302.
  • [4] Renker D. Properties of avalanche photodiodes for applications in high energy physics, astrophysics and medical imaging. Nuclear Instruments and Methods in Physics Research Section A. 2002; 486(1-2):164-169.
  • [5] Hamamatsu Photonics [Internet]. Photodiodes; 2018 [cited 2018 March 05]. Available from https://www.hamamatsu.com/jp/en/product/optical-sensors/photodiodes/index.html.
  • [6] Chatrchyan S, Hmayakyan G, Khachatryan V, Sirunyan AM, Adam W, CMS Collaboration, et al. The CMS experiment at the CERN LHC. Journal of Instrumentation. 2008; 3:S08004.
  • [7] Paramatti R, on behalf of the CMS Collaboration. Design options for the upgrade of the CMS electromagnetic calorimeter. Nuclear and Particle Physics Proceedings. 2016; 273–275:995–1001.
  • [8] Liu W, Zhang Q, Zhou W, Gu C, Yin S. Growth and Luminescence of M-Type GdTaO4 and Tb:GdTaO4 Scintillation Single Crystals. IEEE Transactions on Nuclear Science. 2010; 57(3):1287-1290.
  • [9] Yang H, Peng F, Zhang Q, Guo C, Shi C, Liu W, et al. A promising high-density scintillator of GdTaO4 single crystal. CrystEngComm. 2014; 16(12):2480-2485.
  • [10] Lecoq P, Dafinei I, Auffray E, Schneegans M, Korzhik MV, Missevitch OV, et al. Lead tungstate (PbWO4) scintillators for LHC EM calorimetry. Nuclear Instruments and Methods in Physics Research Section A. 1995; 365(2-3):291–298.
  • [11] Moses WW, Weber MJ, Derenzo SE, Perry D, Berdahl P, Boatner LA. Prospects for dense, infrared emitting scintillators. IEEE Trans. Nucl. Sci.1998; 45(3):462–466.
  • [12] Alexeev GA, Binon F, Dolgopolov AV, Donskov SV, Fyodorov AA, Kachanov VA, et al. Beam test results of a PbWO4 crystal calorimeter prototype. Nuclear Instruments and Methods in Physics Research Section A. 1995; 364(2):307-310.
  • [13] Novotny R, Doring W, Mengel K, Metag V, Pienne C. Response of a PbWO4-scintillator array to electrons in the energy regime below 1 GeV. IEEE Transactions on Nuclear Science. 1997; 44(3):477-483.
  • [14] Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, et al. Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A. 2003; 506(3):250-303.
  • [15] Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, et al. Geant4 developments and applications. IEEE Transactions on Nuclear Science. 2006; 53(1):270-278.
  • [16] Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, et al. Recent developments in Geant4. Nuclear Instruments and Methods in Physics Research Section A. 2016; 835:186-225.
  • [17] Ikeda H, Satpathy A, Ahn BS, Aulchenko VM, Bondar AE, Cheon BG, et al. A detailed test of the CsI (Tl) calorimeter for BELLE with photon beams of energy between 20 MeV and 5.4 GeV. Nuclear Instruments and Methods in Physics Research A. 2000; 441(3):401-426.
  • [18] Pilicer E, Kocak F, Tapan I. Excess noise factor of neutron-irradiated silicon avalanche photodiodes. Nuclear Instruments and Methods in Physics Research Section A. 2005; 552(1-2):146-151
  • [19] Kocak F. Simulation studies of crystal-photodetector assemblies for the Turkish accelerator center particle factory electromagnetic calorimeter. Nuclear Instruments and Methods in Physics Research A. 2015; 787:144–147.
  • [20] Kocak F, Tapan I. Simulation of LYSO Crystal for the TAC-PF Electromagnetic Calorimeter. ACTA PHYSICA POLONICA A. 2017; 131(3):527-529.

Birleşik GdTaO4 Kristal-Foto Detektör Sistemi için Elektromanyetik Enerji Çözünürlüğünün Benzetim Çalışması ile Belirlenmesi

Year 2021, Volume: 10 Issue: 1, 83 - 89, 25.06.2021
https://doi.org/10.46810/tdfd.821733

Abstract

Scintillators used as active materials of calorimeters plays an important role in particle physics experiments. The optical, scintillating and physical properties of such materials affect performances of calorimeters significantly. In this work, GdTaO4 crystal with very high density was examined as an active material in a homogenous calorimeter with a simulation study. This paper presents the results of the electromagnetic performances of a homogenous calorimeter whose active material is GdTaO4. Calorimeter module were reconstructed in the simulation program in different geometries and energy resolution values for various scintillator-photodetector combinations were obtained as a function of incident gamma beam energies. The predictions of the improvements in energy resolutions with the interested scintillator-photodetector combinations compared to previous studies were noted.

References

  • [1] Ablikim M, An ZH, Bai JZ, Berger N, Bian JM, Cai X, et al. Design and construction of the BesIII detector. Nuclear Instruments and Methods in Physics Research Section A. 2010; 614(3):345-399.
  • [2] Lewandowski B, for the BaBaR EMC Group. The BaBar electromagnetic calorimeter. Nuclear Instruments and Methods in Physics Research Section A. 2002; 494(1-3):303-307.
  • [3] Miyabayashi K, for the Belle Electromagnetic Calorimeter Group. Belle electromagnetic calorimeter. Nuclear Instruments and Methods in Physics Research Section A. 2002; 494(1-3):298-302.
  • [4] Renker D. Properties of avalanche photodiodes for applications in high energy physics, astrophysics and medical imaging. Nuclear Instruments and Methods in Physics Research Section A. 2002; 486(1-2):164-169.
  • [5] Hamamatsu Photonics [Internet]. Photodiodes; 2018 [cited 2018 March 05]. Available from https://www.hamamatsu.com/jp/en/product/optical-sensors/photodiodes/index.html.
  • [6] Chatrchyan S, Hmayakyan G, Khachatryan V, Sirunyan AM, Adam W, CMS Collaboration, et al. The CMS experiment at the CERN LHC. Journal of Instrumentation. 2008; 3:S08004.
  • [7] Paramatti R, on behalf of the CMS Collaboration. Design options for the upgrade of the CMS electromagnetic calorimeter. Nuclear and Particle Physics Proceedings. 2016; 273–275:995–1001.
  • [8] Liu W, Zhang Q, Zhou W, Gu C, Yin S. Growth and Luminescence of M-Type GdTaO4 and Tb:GdTaO4 Scintillation Single Crystals. IEEE Transactions on Nuclear Science. 2010; 57(3):1287-1290.
  • [9] Yang H, Peng F, Zhang Q, Guo C, Shi C, Liu W, et al. A promising high-density scintillator of GdTaO4 single crystal. CrystEngComm. 2014; 16(12):2480-2485.
  • [10] Lecoq P, Dafinei I, Auffray E, Schneegans M, Korzhik MV, Missevitch OV, et al. Lead tungstate (PbWO4) scintillators for LHC EM calorimetry. Nuclear Instruments and Methods in Physics Research Section A. 1995; 365(2-3):291–298.
  • [11] Moses WW, Weber MJ, Derenzo SE, Perry D, Berdahl P, Boatner LA. Prospects for dense, infrared emitting scintillators. IEEE Trans. Nucl. Sci.1998; 45(3):462–466.
  • [12] Alexeev GA, Binon F, Dolgopolov AV, Donskov SV, Fyodorov AA, Kachanov VA, et al. Beam test results of a PbWO4 crystal calorimeter prototype. Nuclear Instruments and Methods in Physics Research Section A. 1995; 364(2):307-310.
  • [13] Novotny R, Doring W, Mengel K, Metag V, Pienne C. Response of a PbWO4-scintillator array to electrons in the energy regime below 1 GeV. IEEE Transactions on Nuclear Science. 1997; 44(3):477-483.
  • [14] Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, et al. Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A. 2003; 506(3):250-303.
  • [15] Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, et al. Geant4 developments and applications. IEEE Transactions on Nuclear Science. 2006; 53(1):270-278.
  • [16] Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, et al. Recent developments in Geant4. Nuclear Instruments and Methods in Physics Research Section A. 2016; 835:186-225.
  • [17] Ikeda H, Satpathy A, Ahn BS, Aulchenko VM, Bondar AE, Cheon BG, et al. A detailed test of the CsI (Tl) calorimeter for BELLE with photon beams of energy between 20 MeV and 5.4 GeV. Nuclear Instruments and Methods in Physics Research A. 2000; 441(3):401-426.
  • [18] Pilicer E, Kocak F, Tapan I. Excess noise factor of neutron-irradiated silicon avalanche photodiodes. Nuclear Instruments and Methods in Physics Research Section A. 2005; 552(1-2):146-151
  • [19] Kocak F. Simulation studies of crystal-photodetector assemblies for the Turkish accelerator center particle factory electromagnetic calorimeter. Nuclear Instruments and Methods in Physics Research A. 2015; 787:144–147.
  • [20] Kocak F, Tapan I. Simulation of LYSO Crystal for the TAC-PF Electromagnetic Calorimeter. ACTA PHYSICA POLONICA A. 2017; 131(3):527-529.
There are 20 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Ali Öztürk 0000-0002-1404-6515

Güral Aydın 0000-0002-4996-1174

Publication Date June 25, 2021
Published in Issue Year 2021 Volume: 10 Issue: 1

Cite

APA Öztürk, A., & Aydın, G. (2021). Birleşik GdTaO4 Kristal-Foto Detektör Sistemi için Elektromanyetik Enerji Çözünürlüğünün Benzetim Çalışması ile Belirlenmesi. Türk Doğa Ve Fen Dergisi, 10(1), 83-89. https://doi.org/10.46810/tdfd.821733
AMA Öztürk A, Aydın G. Birleşik GdTaO4 Kristal-Foto Detektör Sistemi için Elektromanyetik Enerji Çözünürlüğünün Benzetim Çalışması ile Belirlenmesi. TJNS. June 2021;10(1):83-89. doi:10.46810/tdfd.821733
Chicago Öztürk, Ali, and Güral Aydın. “Birleşik GdTaO4 Kristal-Foto Detektör Sistemi için Elektromanyetik Enerji Çözünürlüğünün Benzetim Çalışması Ile Belirlenmesi”. Türk Doğa Ve Fen Dergisi 10, no. 1 (June 2021): 83-89. https://doi.org/10.46810/tdfd.821733.
EndNote Öztürk A, Aydın G (June 1, 2021) Birleşik GdTaO4 Kristal-Foto Detektör Sistemi için Elektromanyetik Enerji Çözünürlüğünün Benzetim Çalışması ile Belirlenmesi. Türk Doğa ve Fen Dergisi 10 1 83–89.
IEEE A. Öztürk and G. Aydın, “Birleşik GdTaO4 Kristal-Foto Detektör Sistemi için Elektromanyetik Enerji Çözünürlüğünün Benzetim Çalışması ile Belirlenmesi”, TJNS, vol. 10, no. 1, pp. 83–89, 2021, doi: 10.46810/tdfd.821733.
ISNAD Öztürk, Ali - Aydın, Güral. “Birleşik GdTaO4 Kristal-Foto Detektör Sistemi için Elektromanyetik Enerji Çözünürlüğünün Benzetim Çalışması Ile Belirlenmesi”. Türk Doğa ve Fen Dergisi 10/1 (June 2021), 83-89. https://doi.org/10.46810/tdfd.821733.
JAMA Öztürk A, Aydın G. Birleşik GdTaO4 Kristal-Foto Detektör Sistemi için Elektromanyetik Enerji Çözünürlüğünün Benzetim Çalışması ile Belirlenmesi. TJNS. 2021;10:83–89.
MLA Öztürk, Ali and Güral Aydın. “Birleşik GdTaO4 Kristal-Foto Detektör Sistemi için Elektromanyetik Enerji Çözünürlüğünün Benzetim Çalışması Ile Belirlenmesi”. Türk Doğa Ve Fen Dergisi, vol. 10, no. 1, 2021, pp. 83-89, doi:10.46810/tdfd.821733.
Vancouver Öztürk A, Aydın G. Birleşik GdTaO4 Kristal-Foto Detektör Sistemi için Elektromanyetik Enerji Çözünürlüğünün Benzetim Çalışması ile Belirlenmesi. TJNS. 2021;10(1):83-9.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.